
iCC 2008 CAN in Automation

 05-8

Management of Media Replication in ReCANcentrate

Manuel Barranco1, Julián Proenza1, and Luis Almeida2

 1DMI - Universitat de les Illes Baleares, Spain, 2DET/IEETA – Universidade de Aveiro, Portugal

Distributed embedded control systems for safety-critical applications require a high
level of dependability. Despite the existence of communication protocols such as TTP
or FlexRay specifically developed to provide that level of dependability, there has also
been an increasing interest in CAN, given its low-cost, electrical robustness, good
real-time properties and widespread use. However, the use of CAN in these
applications has been controversial due to dependability limitations. To overcome
some of those limitations, namely those arising from its non-redundant bus topology,
we have proposed a replicated star topology, ReCANcentrate, which is transparent for
any CAN-based application and protocol, and whose hubs incorporate the necessary
fault-treatment and fault tolerance mechanisms. In this document we focus on how
each node of ReCANcentrate manages the transmissions and the receptions on the
replicated star, as well as how it tolerates faults.

Introduction

One of the most important requirements of
distributed embedded control systems in
safety-critical applications is a highly
reliable communication infrastructure,
such as TTP [1] and FlexRay [2]. This
requirement can be achieved, in part, by
means of replicated communication media
schemes, which provide the necessary
fault tolerance.
Although there has been a growing
interest in using CAN [3] or CAN-based
protocols in this context [4], one of the
major limitations of CAN is that it relies on
a non-redundant bus topology that lacks
the necessary error-containment and fault
tolerance mechanisms. In order to
overcome these limitations, we have
developed a new replicated star topology,
called ReCANcentrate that includes two
hubs [5] (Figure 1). In ReCANcentrate
each node is connected to each hub by a
dedicated link that contains an uplink and
a downlink. Additionally, both hubs are
interconnected by means of at least two
interlinks each of which contains two
independent sublinks, one for each
direction. Each hub includes fault-
treatment capabilities to contain errors
originated at nodes [5], and to provide
tolerance to hub and link faults.
ReCANcentrate is fully compatible with
CAN and commercial off-the-shelf (COTS)

CAN components, being transparent for
any CAN-based application or protocol.
In ReCANcentrate the same data is
transmitted in parallel throughout each of
the media replicas in order to provide fault
tolerance, i.e. each star can be considered
as a channel that conveys a replica of the
same data. However, two major problems
arise when managing active replicated
channels in parallel. First, to transmit in
parallel does not guarantee the traffic to
be equal in all channels. Thus, each node
must determine whether or not two frames
received at different instants of time, each
one through a different channel, are in fact
copies of the same frame (duplicates).
Moreover, the node must also be able to
diagnose when a frame received from one
channel is omitted from the others
(omissions). Notice that due to the error-
signaling and arbitration mechanisms of
CAN, a single bit error in one channel is
enough for its traffic to evolve in a different
way than in the other replicas. The other
main problem of using replicated channels
is that each node must be able to detect
when a fault in the media prevents it from
communicating through a given medium;
so that the node can continue
communicating using only non-faulty
medium replicas.
Mechanisms have been proposed to cope
with these problems when using replicated

iCC 2008 CAN in Automation

05-9

CAN channels [4] [6]. Although any of
them could be adopted for dealing with
replicated stars in ReCANcentrate, either
they are complex and expensive in terms
of hardware and software, or they would
limit the accuracy of the fault diagnosis
performed by each hub [5].
This paper explains how each node of
ReCANcentrate manages the replicated
star in a simple way that does not present
the disadvantages of existing solutions.
We firstly address the basic characteristics
of ReCANcentrate. We then focus on how
ReCANcentrate allows nodes to easily
manage the replicated media and explain
the proposed management itself.
Afterwards, we describe the basics of a
possible software implementation to be
executed on hardware COTS components,
and, finally, we conclude the paper.

ReCANcentrate basics

Due to its scarce error-containment and
fault tolerance mechanisms, a CAN bus
includes multiple single points of failure,
i.e. multiple components whose failure
cause the failure of the overall system [7].
The faults that may cause a generalized
failure in CAN are: stuck-at-dominant,
stuck-at-recessive, medium partition, bit-
flipping and babbling idiot faults [8].
In order to eliminate all single points of
failure from a CAN network we have
developed a new replicated star topology
called ReCANcentrate [5] (Figure 1). Each
hub receives each node contribution
through the corresponding uplink, couples
all the non-faulty contributions with a
logical AND function, and broadcasts the
resultant coupled signal through the
downlinks. The use of an uplink and a
downlink allows each hub to monitor each
node contribution separately and detect
faulty transmissions. Permanently stuck-at
or bit-flipping contributions are disabled,
and so not propagated to the coupled
signal, thus being confined to the port of
origin. A medium partition cannot provoke
a network partition, but only manifests as
either a stuck-at or a bit-flipping fault. A
further improvement of ReCANcentrate
concerns the treatment of babbling-idiot
faults, which could be achieved in a
relatively simple way [8].

In order to prevent that an error in one star
leads the traffic in both stars to evolve in a
different way, making data replication
more complex to manage, both hubs
exchange their traffic through the interlinks
and perform a special AND coupling [5] to
create a single communication domain.
Thereby the same value is transmitted bit
by bit through their downlinks, so that the
quasi-simultaneous view of each bit is
enforced in the whole replicated domain.

When a hub fails, it can exhibit three
different types of failures. First, it may
unfairly isolate non-faulty ports, what will
not generate errors that propagate to other
ports. Second, it may fail independently
transmitting stuck-at or bit-flipping bits
through any of its ports. This second type
of failure embraces all faults that lead the
hub to generate erroneous bits, as well as
faults that lead the hub to stop performing
fault-treatment actions. Note that a hub
has not the capacity of building CAN
frames [7].
A hub that transmits erroneous bits is
confined at two different levels. Firstly,
each hub is able to detect errors in each
sublink coming from the other hub and to
isolate it when faulty. Secondly, as will be
explained later, each node confines the
fault mainly using the CAN standard fault
diagnosis mechanisms, and continues
communicating through the non-faulty hub.
This second level of fault confinement also
applies to link faults, so that each node
can tolerate the failure of one of its links
The third type of failure a hub may exhibit
occurs when it erroneously decides to stop
coupling the contribution of the other hub
with its own contribution, so that the single
communication domain is not enforced.
The same faulty situation happens if all the
incoming sublinks of a hub fail.

Figure 1: Architecture of ReCANcentrate

iCC 2008 CAN in Automation

05-10

To enforce data consistency when this
kind of failure occurs, we are devising
mechanisms that prevent any node from
communicating as long as the fault is not
detected and treated. Moreover, these
mechanisms will ensure that all non-faulty
nodes are consistently informed about
whether the hubs have been able to
reestablish the single communication
domain, or it is only possible to use both
stars independently. This paper focuses
on how nodes manage the replicated star
when the single communication domain is
enforced. How to treat a permanent or
transient hub decoupling is out of scope.

1. Media management in ReCANcentrate

1.1. Simplification of the media management

Since hubs are coupled, the set of hubs of
ReCANcentrate can be seen as a single
hub that provides a single communication
domain. To better understand this, we can
make an analogy between ReCANcentrate
and a CAN bus in which each node
includes two controllers to access the bus.
As depicted in Figure 2, the two coupled
hubs are logically equivalent to a unique
CAN bus, and each link corresponds to a
given stub. Thereby, each node does not
have to deal with a set of replicated
channels, but with different views of the
same channel, which is easier.

The management of the replicated media
can be reduced to trigger each
transmission towards one of the hubs only,
while receiving from both hubs at the
same time. We proposed a sketch of this
idea and the node hardware scheme
needed to support it in [5]. The node is

constituted by COTS components only:
two CAN controllers and a micro-controller
(Figure 2), a given CAN controller is
connected only to one hub by means of a
dedicated uplink and downlink, using for
this purpose two COTS transceivers [5].
One of the controllers acts as the
transmission controller, so that it is used to
both transmit the frames of its node and
receive frames sent by other nodes. Note
that the transmission controller does not
receive its own frames. The other
controller is used as the reception
controller. It receives frames transmitted
by its own node, as well as by other
nodes. If one controller fails, the non-faulty
one is used as the transmission controller
and the node will no longer receive its own
messages, which, nevertheless, has no
negative consequence.
When a frame is successfully exchanged
through the network, i.e. when a delivery
event occurs, each node expects that its
two controllers quasi-simultaneously notify
of that event. This quasi-simultaneous
notification can occur in two different
manners. On the one hand, if the node
successfully transmits a frame, the
transmission controller and the reception
controller notify of the transmission and
reception of this frame respectively. On
the other hand, if the node receives a
frame sent from another node, it expects
to be simultaneously notified of this
reception by its two CAN controllers.
The node must be fast enough to handle
the pair of notifications corresponding to a
given delivery event before a new delivery
event occurs. As will be explained, the
fulfillment of this requirement is necessary
to correctly associate each controller
notification with its corresponding delivery
event, and further enhances the
capabilities of detecting controller faults.
In what concerns how a node detects a
fault in a given star, e.g. a failure in the link
that attaches it to a given hub, and stops
communicating through it, recall that a
CAN controller includes a Transmission
Error Counter (TEC), a Reception Error
Counter (REC) [3] and, sometimes, a
threshold for them, called error warning
limit. Whenever any of the error counters
of a CAN controller reaches the referred
limit, the node stops using it.

Figure 2: Bus & replicated star analogy

iCC 2008 CAN in Automation

05-11

Since both stars form a unique
communication channel even in presence
of faults in the media and nodes, this
eliminates the need for each node to deal
with discrepancies between channels,
which is difficult and typical in other
replicated media schemes. In contrast, a
fault can only lead a node to observe that
its two controllers differ in the vision of the
same channel. To better understand this,
next we analyze the faults that may occur
in the communication subsystem and the
discrepancies they provoke between the
controllers of a node.

1.2. Faults and discrepancies

We differentiate between faults occurring
at the media, i.e. at any hub or any link
(transceivers, connectors and cables), and
at controllers.
Media faults only manifest as the
generation of syntactically incorrect bit
values, which block the channel until they
are isolated (stuck-at-recessive bits can be
considered as instantaneously isolated).
Thus, as long as a media fault is not
confined, it is impossible that any
controller notifies about a transmission or
a reception and hence, no discrepancy
between controllers can take place
meanwhile. Nevertheless, there is an
exception to this statement: the
occurrence of any of the inconsistency
scenarios that have been identified for
standard CAN, which may occur in the
presence of errors in the last-but-one bit of
a frame [9]. In these scenarios the atomic
broadcast is violated, even when there is a
single communication domain. However, it
is not compulsory that a node of
ReCANcentrate deals with any of these
inconsistent scenarios. First, because their
probability of occurrence have been
controversial [10]. Second, because they
are not a new problem introduced by the
use of media replication, but an old
problem of CAN that can be solved using
any of the modifications or additions to
CAN that have been already proposed [9].
Furthermore, since ReCANcentrate is
transparent for any CAN-based protocol, it
can be used as their communication
infrastructure anyway. Therefore, we
exclude the treatment of the inconsistency

scenarios of CAN from our replicated
media management.
Once a media fault is isolated, the
following types of situations are possible.
First, if the erroneous bits were generated
by a hub, then it was isolated by the CAN
controllers these bits were transmitted to,
as well as by the corresponding interlink
ports of the other hub, as already
explained. A controller that isolates a hub
will not notify its node of any further
delivery event. Second, if the bits were
generated by a cable, connector or
transceiver used to attach a controller to a
given hub, the corresponding hub port was
disabled, so that the controller does not
notify its node of any further transmission.
Moreover, in this case, the controller also
will eventually reach its error warning limit
and the node will stop using it. However,
notice that once the controller is isolated, it
may continue receiving frames sent by
other controllers, as long as it does not
reach the error warning limit and there is
at least one controller that acknowledges
the frames in their ACK slot. This has no
negative consequences and it is simply
due to the fact that the hub continues
broadcasting through the downlink of a
port it has isolated.
Taking into account all these
considerations, we can assure that a
media fault can only provoke what we call
a notification omission discrepancy, i.e. it
can only lead a node to observe that only
one of its CAN controllers informs about
the occurrence of a delivery event.
Regarding faults happening at controllers,
we analyze their effects following the well-
known categorization of failures proposed
in [11]. We distinguish between crash and
byzantine controller failures. When a
controller exhibits a crash failure, it stops
performing any action, so that it will not
generate errors on the network and will
notify its node about nothing. Thus, the
node will observe a notification omission
discrepancy thereafter. In the case of
presenting a byzantine failure, the
controller fails arbitrarily with no
restrictions either in the value domain or in
the time domain. A byzantine controller
failure manifests at the side of the network
by generating stuck-at or bit-flipping bits,
as well as semantically incorrect frames. If

iCC 2008 CAN in Automation

05-12

it generates erroneous bits, it will cause
the same effects on the communication
subsystem as a fault in any of the
components that attach it to a given hub
port and, hence, its node will only observe
notification omission discrepancies.
Semantically incorrect frames do not
provoke discrepancies, but lead nodes to
receive incorrect data as long as the hubs
do not confine the failure. Once isolated,
the controller acts as if it was isolated due
to any of the failures already explained.
Finally, when a byzantine failure leads a
controller to deliver notifications that are
arbitrarily incorrect, then not only
notification omission discrepancies can
occur, but also what we call a notification
non-omission discrepancy. This
discrepancy occurs whenever a node
observes that its two controllers notify of a
delivery event, but they do not coincide in
the frame the event is related to.

1.3. Treatment of discrepancies

Each node treats discrepancies between
the visions its two controllers have of a
delivery event as follows. In what concerns
a notification omission discrepancy, it can
be provoked by both a fault in the media
and any kind of failure of a controller, as
explained before. Thus, when such a
discrepancy occurs, it is not possible to
elucidate which controller is faulty (or has
problems for communicating). To
overcome this problem, we propose to use
a best-effort strategy that consists in
assuming the notified event and its
corresponding controller as correct, but
without diagnosing the controller that omits
it as faulty. If the notification was correct, it
means that the controller that omitted it is
faulty or was isolated by its hub due to a
media fault. Thus, to accept the frame is
correct because it allows the node to
tolerate the fault. If the notification was
actually incorrect, to accept it is wrong, but
this situation can exclusively be provoked
by a byzantine controller fault and we are
not obliged to deal with it. This is because
controller faults are an old problem of
communication subsystems that we have
not introduced, e.g. in a typical non-
redundant CAN bus, the controller of a
node might forge notifications of
transmissions and of receptions.

Moreover, since we do not diagnose the
correct controller (which omitted the
notification) as faulty, at least we do not
unfairly penalize it.
In other replicated media schemes the
decision of what to do when observing
omissions cannot rely on a best-effort
approach. This is because an omission
would not happen between controllers but
between channels and, thus, nodes should
run an algorithm to reach a consensus
about which channel is faulty.
Regarding non-omission notification
discrepancies, the node can use them to
diagnose byzantine controller faults to
some extent. In particular, a byzantine
controller fault can be diagnosed when the
notification from a faulty controller
coincides in time with a notification of the
correct controller, and both notifications
refer to a different frame. Since when this
happens, the node cannot know a priori
which controller is actually faulty, it must
stop communicating and run an internal
test in order to make a decision. This
capacity of fault diagnosis is an advantage
of our approach compared with other
solutions. Especially with respect to those
that use only one CAN controller [6], since
they cannot detect controller faults by
means of a simple comparison.

2. Replicated media management routines

Next we briefly describe a possible
implementation of the presented replicated
media management. It consists in building
a ReCANcentrate device driver that
includes all the functionality needed to
abstract away the details of both, the node
structure and the media replication. This
driver basically includes a reception and a
transmission buffer, as well as a set of
interrupt service routines to handle
different communication events.
Each controller is marked as playing one
of the following roles: transmission
controller or reception controller (Section
3.1). A controller can also be marked as
non-active, which indicates that it is not
being used because it is faulty.
The driver is devised to use CAN
controllers that at least include three
interrupts: a transmit interrupt, which
originates whenever a frame has been

iCC 2008 CAN in Automation

05-13

successfully transmitted; a reception
interrupt, which triggers whenever a new
frame has been received; and an error
interrupt, which is launched when the error
warning limit is reached. The driver
assumes that all interrupts have the same
priority, so that they cannot be nested.

2.4. Transmission and reception routines

The transmission routine and the reception
routine respectively handle the transmit
interrupt and the reception interrupt. When
a delivery event occurs, it is expected that
each controller of the node notifies of it by
triggering one of these routines, which will
be executed in the node’s micro-controller.
It is worth noting that a node does not
observe each bit in both stars exactly at
the same instant of time, and that its
controllers (and transceivers) have slightly
different internal delays. Thus, when a
delivery event occurs, one controller will
be the first to interrupt the micro and will
be served. Meanwhile the execution of the
interrupt triggered by the other controller
will be pending. However, as explained
next, these two routines cooperatively
handle the event. For the sake of
simplicity, the routine executed first will be
referred to as routine A, whereas the other
as routine B.
Besides performing the operations needed
to handle a delivery event, the routines
must check whether or not the notifications
of both controllers refer to the same frame,
in order to detect a possible notification
non-omission discrepancy. Routine A
performs this checking. If affirmative, the
routine leaves an indication to inform
routine B that it has validated the
correspondence between the notifications,
so that routine B does not have to check it
again. Otherwise, routine A indicates to
the application that a notification non-
omission discrepancy occurred.
Note that since routine A is the one that is
executed first, it has to give enough time
to allow the trigger of routine B. If when
this time expires, routine B has not been
launched yet, routine A assumes that a
notification omission discrepancy
occurred, and goes ahead to perform
alone the actions needed to handle the
delivery event.

In what concerns routine B, it must reset
the indication (left by routine A) that
informs about the correspondence
between notifications. Otherwise, the
execution of a routine corresponding to a
future delivery event would accept an
obsolete indication. Besides, routine B
performs the actions needed to handle the
delivery event, but without carrying out the
operations already performed by routine A.
This cooperation between the two routines
is only possible if the micro executes them
fast enough to prevent that a new delivery
event occurs before they finish. Otherwise,
a given routine could cooperate with a
routine related to a later delivery event.
The time for executing them must not
exceed the time required for transmitting
the shortest CAN remote frame [3].

Figure 3 depicts the general logic structure
of the transmission routine. Recall that a
frame transmitted by the transmission
controller should be received by the
reception controller. Thus, it is possible
that a reception routine has been triggered
and executed before. Therefore, the
transmission routine checks if a former
reception routine has indicated that it has
validated the correspondence between the
frame transmitted and received. If the
result of this checking is affirmative, the

Figure 3: Transmission routine

iCC 2008 CAN in Automation

05-14

routine plays the role of routine B and it
only needs to reset the indication, to notify
the application of the successful
transmission, and to release the
transmission buffer of the controller. If the
result of the checking is negative, the
transmission routine acts as a routine A. It
waits K units of time to give enough time
to the reception controller to notify the
reception of the transmitted frame. If the
reception controller notifies the reception
of a frame, and that frame coincides with
the transmitted one, the transmission
routine leaves an indication of this
correspondence. Then, it notifies the
application of the successful transmission,
and releases the transmission buffer.
Otherwise, if frames do not coincide, the
routine notifies the application that a
notification non-omission discrepancy
occurred. Finally, if the reception controller
does not notify the expected reception, a
notification omission discrepancy
occurred; the routine indicates this
condition and goes ahead.

Figure 4 depicts the general logic structure
of the reception routine. It is analogous to
the transmission routine. The main

difference between them is that when
reception routine acts as routine A, it must
check whether the received frame is in fact
a copy of the frame transmitted through
the other controller, or in contrast, it is a
frame transmitted by another node.
To know if the former possibility has
occurred, the routine inspects if the other
controller is marked as the transmission
controller and it has notified a successful
transmission. If affirmative, the routine is
the responsible for testing the
correspondence between the frame it
handles and the frame transmitted. If
negative, it definitively abandons the
possibility of handling a reception of a
frame of its own node.
When the routine knows that the unique
possibility left is to be handling the
reception of a frame sent by another node,
it must check the correspondence with the
frame that is expected to be received at
the other controller. If this correspondence
is successfully confirmed, the routine
leaves an indication of it, transfers the
received frame to the reception buffer of
the driver, and releases the reception
buffer of its corresponding controller.

2.5. Quarantine routine

The quarantine routine performs the
actions needed when a controller is
diagnosed as faulty. On the one hand, this
routine is executed one time for each
controller when a notification non-omission
discrepancy occurs. On the other hand, it
is triggered when a controller reaches its
error warning limit (Section 3.1). When the
routine executes due to a notification non-
omission discrepancy, it resets the
controllers and performs a test to
determine which of them is faulty.
If the routine is triggered because a given
controller reaches the error warning limit, it
marks that controller as non-active, and
further performs the following actions. If
the other controller is also marked as non-
active, the routine notifies the application
that it is not possible to communicate with
the other nodes. If the other controller is
not marked as non-active, and the
controller the routine is executing for was
the transmission controller, the routine
marks the other controller as the
transmission controller. Additionally, if the

Figure 4: Reception routine

iCC 2008 CAN in Automation

05-15

application is waiting for the result of a
transmission request, the routine notifies
that such request was not granted, so that
the application can request the
transmission using the surviving controller.

3. Conclusions

One of the major objections against using
CAN as the communication infrastructure
of safety-critical distributed control
systems is that its non-redundant bus
topology lacks the appropriate error-
containment and fault tolerance
mechanisms. To provide these
mechanisms, we developed a replicated
star topology called ReCANcentrate, in
which data is transmitted in parallel
through both stars. A special coupling
between both hubs creates a single
communication domain or logical channel,
so that each node quasi-simultaneously
receives each bit from both hubs.
The enforcement of this single
communication domain simplifies the
management of the replicated traffic each
node has to perform. In this paper we
describe this management and propose a
particular implementation using COTS
components.
Specifically, each node includes two CAN
controllers, each one connected to a
different star. Differentiating duplicated
from omitted frames is straightforward,
since each frame is quasi-simultaneously
broadcasted by both hubs, and faults in
the media or at controllers cannot provoke
that each hub broadcasts a given frame at
a different instant of time. A media fault
may only lead one or more nodes to
observe that one of its controllers cannot
access the channel or does not notify
about the frames that are exchanged
through the network. This is tolerated just
by communicating through the controller
that can correctly access the channel.
Byzantine controller faults may further lead
its node to observe that both controllers do
not agree on which frames are being
exchanged in the network. We are not
obliged to deal with these situations, since
they are not introduced by the use of a
replicated media scheme. Thus, the node
manages these situations following a best-
effort approach. Moreover, beyond the
capacity of other replicated media

architectures, a node of ReCANcentrate
can diagnose, to some extent, controller
malicious faults.

M. Barranco, manuel.barranco@uib.es
J. Proenza, julian.proenza@uib.es
Systems, Robotics and Vision Group
Dep. Ciències Matemàtiques i Informàtica,
Universitat de les Illes Balears (SPAIN)

L. Almeida, lda@det.ua.pt
Dep. de Electrónica e Telecomunicações,
Universidade de Aveiro (PORTUGAL)

4. References

[1] H. Kopetz and G. Grunsteidl.TTP. “A Protocol
for Fault-Tolerant and Real-Time Systems”.
IEEE COMPUTER, January 1994.

[2] FlexRayTM. “FlexRay Communications
System-Protocol Specification, Version 2.0”.
2003.

[3] ISO, “ISO11898. Road vehicles - Interchange
of digital information - Controller area network
(CAN) for high-speed communication”, 1993.

[4]. J. R. Pimentel and J. A. Fonseca. “FlexCAN: A
Flexible Architecture for Highly Dependable
Embedded Applications”. The 3rd International
Workshop on Real-Time Networks.

[5] M. Barranco, L.Almeida and J. Proenza.
“ReCANcentrate: A replicated star topology
for CAN networks”. ETFA 2005, 10th IEEE
International Conference on Emerging
Technologies and Factory Automation.
Catania, Italy, September 2005.

[6] J. Rufino, P. Veríssimo, and G. Arroz. “A
Columbus' Egg Idea for CAN Media
Redundancy”, FTCS-29. The 29th International
Symposium on Fault-Tolerant Computing,
Winconsin, USA, June 1999.

 [7] M. Barranco, J. Proenza, G. Rodríguez-Navas,
L. Almeida. “An Active Star Topology for
Improving Fault Confinement in CAN
Networks”. IEEE Transactions on Industrial
Informatics, vol. 2, issue 2, 78-85, May 2006.

[8] I. Broster and A. Burns. “An Analyzable Bus-
Guardian for Event-Triggered
communication”. Proceedings of the 24th Real-
Time Systems Symposium (RTSS). Cancun,
Mexico, December 2003.

[9] J. Proenza and J. Miro-Julia, “MajorCAN: A
modification to the Controller Area Network to
achieve Atomic Broadcast”. IEEE Int.
Workshop on Group Communication and
Computations. Taipei, Taiwan, 2000.

[10] J. Ferreira, A. Oliveira, P. Fonseca, J. Fonseca.
”An experiment to Assess Bit Error Rate in
CAN”. Proceedings of 3rd International
Workshop on Real-Time Networks. Catania,
Italy, 2004.

[11] S. Poledna. “System model and terminology in
Fault-Tolerant Real-Time Systems: The
Problem of Replica Determinism, Real-Time
Systems”. Chapter 3. in: Engineering and
Computer Science, Kluwer Academic
Publishers. Boston, Dordrecht, London 1996.

