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Distributed embedded control systems for safety-critical applications require a high 
level of dependability. Despite the existence of communication protocols such as TTP 
or FlexRay specifically developed to provide that level of dependability, there has also 
been an increasing interest in CAN, given its low-cost, electrical robustness, good 
real-time properties and widespread use. However, the use of CAN in these 
applications has been controversial due to dependability limitations. To overcome 
some of those limitations, namely those arising from its non-redundant bus topology, 
we have proposed a replicated star topology, ReCANcentrate, which is transparent for 
any CAN-based application and protocol, and whose hubs incorporate the necessary 
fault-treatment and fault tolerance mechanisms. In this document we focus on how 
each node of ReCANcentrate manages the transmissions and the receptions on the 
replicated star, as well as how it tolerates faults. 

Introduction 

One of the most important requirements of 
distributed embedded control systems in 
safety-critical applications is a highly 
reliable communication infrastructure, 
such as TTP [1] and FlexRay [2]. This 
requirement can be achieved, in part, by 
means of replicated communication media 
schemes, which provide the necessary 
fault tolerance. 
Although there has been a growing 
interest in using CAN [3] or CAN-based 
protocols in this context [4], one of the 
major limitations of CAN is that it relies on 
a non-redundant bus topology that lacks 
the necessary error-containment and fault 
tolerance mechanisms. In order to 
overcome these limitations, we have 
developed a new replicated star topology, 
called ReCANcentrate that includes two 
hubs [5] (Figure 1). In ReCANcentrate 
each node is connected to each hub by a 
dedicated link that contains an uplink and 
a downlink. Additionally, both hubs are 
interconnected by means of at least two 
interlinks each of which contains two 
independent sublinks, one for each 
direction. Each hub includes fault-
treatment capabilities to contain errors 
originated at nodes [5], and to provide 
tolerance to hub and link faults. 
ReCANcentrate is fully compatible with 
CAN and commercial off-the-shelf (COTS) 

CAN components, being transparent for 
any CAN-based application or protocol. 
In ReCANcentrate the same data is 
transmitted in parallel throughout each of 
the media replicas in order to provide fault 
tolerance, i.e. each star can be considered 
as a channel that conveys a replica of the 
same data. However, two major problems 
arise when managing active replicated 
channels in parallel. First, to transmit in 
parallel does not guarantee the traffic to 
be equal in all channels. Thus, each node 
must determine whether or not two frames 
received at different instants of time, each 
one through a different channel, are in fact 
copies of the same frame (duplicates). 
Moreover, the node must also be able to 
diagnose when a frame received from one 
channel is omitted from the others 
(omissions). Notice that due to the error-
signaling and arbitration mechanisms of 
CAN, a single bit error in one channel is 
enough for its traffic to evolve in a different 
way than in the other replicas. The other 
main problem of using replicated channels 
is that each node must be able to detect 
when a fault in the media prevents it from 
communicating through a given medium; 
so that the node can continue 
communicating using only non-faulty 
medium replicas. 
Mechanisms have been proposed to cope 
with these problems when using replicated 
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CAN channels [4] [6]. Although any of 
them could be adopted for dealing with 
replicated stars in ReCANcentrate, either 
they are complex and expensive in terms 
of hardware and software, or they would 
limit the accuracy of the fault diagnosis 
performed by each hub [5].  
This paper explains how each node of 
ReCANcentrate manages the replicated 
star in a simple way that does not present 
the disadvantages of existing solutions. 
We firstly address the basic characteristics 
of ReCANcentrate. We then focus on how 
ReCANcentrate allows nodes to easily 
manage the replicated media and explain 
the proposed management itself. 
Afterwards, we describe the basics of a 
possible software implementation to be 
executed on hardware COTS components, 
and, finally, we conclude the paper. 
 
ReCANcentrate basics 

Due to its scarce error-containment and 
fault tolerance mechanisms, a CAN bus 
includes multiple single points of failure, 
i.e. multiple components whose failure 
cause the failure of the overall system [7]. 
The faults that may cause a generalized 
failure in CAN are: stuck-at-dominant, 
stuck-at-recessive, medium partition, bit-
flipping and babbling idiot faults [8]. 
In order to eliminate all single points of 
failure from a CAN network we have 
developed a new replicated star topology 
called ReCANcentrate [5] (Figure 1). Each 
hub receives each node contribution 
through the corresponding uplink, couples 
all the non-faulty contributions with a 
logical AND function, and broadcasts the 
resultant coupled signal through the 
downlinks. The use of an uplink and a 
downlink allows each hub to monitor each 
node contribution separately and detect 
faulty transmissions. Permanently stuck-at 
or bit-flipping contributions are disabled, 
and so not propagated to the coupled 
signal, thus being confined to the port of 
origin. A medium partition cannot provoke 
a network partition, but only manifests as 
either a stuck-at or a bit-flipping fault. A 
further improvement of ReCANcentrate 
concerns the treatment of babbling-idiot 
faults, which could be achieved in a 
relatively simple way [8]. 

In order to prevent that an error in one star 
leads the traffic in both stars to evolve in a 
different way, making data replication 
more complex to manage, both hubs 
exchange their traffic through the interlinks 
and perform a special AND coupling [5] to 
create a single communication domain. 
Thereby the same value is transmitted bit 
by bit through their downlinks, so that the 
quasi-simultaneous view of each bit is 
enforced in the whole replicated domain. 
 

 
 
 
When a hub fails, it can exhibit three 
different types of failures. First, it may 
unfairly isolate non-faulty ports, what will 
not generate errors that propagate to other 
ports. Second, it may fail independently 
transmitting stuck-at or bit-flipping bits 
through any of its ports. This second type 
of failure embraces all faults that lead the 
hub to generate erroneous bits, as well as 
faults that lead the hub to stop performing 
fault-treatment actions. Note that a hub 
has not the capacity of building CAN 
frames [7]. 
A hub that transmits erroneous bits is 
confined at two different levels. Firstly, 
each hub is able to detect errors in each 
sublink coming from the other hub and to 
isolate it when faulty. Secondly, as will be 
explained later, each node confines the 
fault mainly using the CAN standard fault 
diagnosis mechanisms, and continues 
communicating through the non-faulty hub. 
This second level of fault confinement also 
applies to link faults, so that each node 
can tolerate the failure of one of its links 
The third type of failure a hub may exhibit 
occurs when it erroneously decides to stop 
coupling the contribution of the other hub 
with its own contribution, so that the single 
communication domain is not enforced. 
The same faulty situation happens if all the 
incoming sublinks of a hub fail. 

Figure 1: Architecture of ReCANcentrate 
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To enforce data consistency when this 
kind of failure occurs, we are devising 
mechanisms that prevent any node from 
communicating as long as the fault is not 
detected and treated. Moreover, these 
mechanisms will ensure that all non-faulty 
nodes are consistently informed about 
whether the hubs have been able to 
reestablish the single communication 
domain, or it is only possible to use both 
stars independently. This paper focuses 
on how nodes manage the replicated star 
when the single communication domain is 
enforced. How to treat a permanent or 
transient hub decoupling is out of scope. 

1. Media management in ReCANcentrate 

1.1. Simplification of the media management 

Since hubs are coupled, the set of hubs of 
ReCANcentrate can be seen as a single 
hub that provides a single communication 
domain. To better understand this, we can 
make an analogy between ReCANcentrate 
and a CAN bus in which each node 
includes two controllers to access the bus. 
As depicted in Figure 2, the two coupled 
hubs are logically equivalent to a unique 
CAN bus, and each link corresponds to a 
given stub. Thereby, each node does not 
have to deal with a set of replicated 
channels, but with different views of the 
same channel, which is easier. 
 

 
 
 
 
The management of the replicated media 
can be reduced to trigger each 
transmission towards one of the hubs only, 
while receiving from both hubs at the 
same time. We proposed a sketch of this 
idea and the node hardware scheme 
needed to support it in [5]. The node is 

constituted by COTS components only: 
two CAN controllers and a micro-controller 
(Figure 2), a given CAN controller is 
connected only to one hub by means of a 
dedicated uplink and downlink, using for 
this purpose two COTS transceivers [5]. 
One of the controllers acts as the 
transmission controller, so that it is used to 
both transmit the frames of its node and 
receive frames sent by other nodes. Note 
that the transmission controller does not 
receive its own frames. The other 
controller is used as the reception 
controller. It receives frames transmitted 
by its own node, as well as by other 
nodes. If one controller fails, the non-faulty 
one is used as the transmission controller 
and the node will no longer receive its own 
messages, which, nevertheless, has no 
negative consequence. 
When a frame is successfully exchanged 
through the network, i.e. when a delivery 
event occurs, each node expects that its 
two controllers quasi-simultaneously notify 
of that event. This quasi-simultaneous 
notification can occur in two different 
manners. On the one hand, if the node 
successfully transmits a frame, the 
transmission controller and the reception 
controller notify of the transmission and 
reception of this frame respectively. On 
the other hand, if the node receives a 
frame sent from another node, it expects 
to be simultaneously notified of this 
reception by its two CAN controllers. 
The node must be fast enough to handle 
the pair of notifications corresponding to a 
given delivery event before a new delivery 
event occurs. As will be explained, the 
fulfillment of this requirement is necessary 
to correctly associate each controller 
notification with its corresponding delivery 
event, and further enhances the 
capabilities of detecting controller faults. 
In what concerns how a node detects a 
fault in a given star, e.g. a failure in the link 
that attaches it to a given hub, and stops 
communicating through it, recall that a 
CAN controller includes a Transmission 
Error Counter (TEC), a Reception Error 
Counter (REC) [3] and, sometimes, a 
threshold for them, called error warning 
limit. Whenever any of the error counters 
of a CAN controller reaches the referred 
limit, the node stops using it. 

Figure 2: Bus & replicated star analogy 
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Since both stars form a unique 
communication channel even in presence 
of faults in the media and nodes, this 
eliminates the need for each node to deal 
with discrepancies between channels, 
which is difficult and typical in other 
replicated media schemes. In contrast, a 
fault can only lead a node to observe that 
its two controllers differ in the vision of the 
same channel. To better understand this, 
next we analyze the faults that may occur 
in the communication subsystem and the 
discrepancies they provoke between the 
controllers of a node. 

1.2. Faults and discrepancies 

We differentiate between faults occurring 
at the media, i.e. at any hub or any link 
(transceivers, connectors and cables), and 
at controllers. 
Media faults only manifest as the 
generation of syntactically incorrect bit 
values, which block the channel until they 
are isolated (stuck-at-recessive bits can be 
considered as instantaneously isolated). 
Thus, as long as a media fault is not 
confined, it is impossible that any 
controller notifies about a transmission or 
a reception and hence, no discrepancy 
between controllers can take place 
meanwhile. Nevertheless, there is an 
exception to this statement: the 
occurrence of any of the inconsistency 
scenarios that have been identified for 
standard CAN, which may occur in the 
presence of errors in the last-but-one bit of 
a frame [9]. In these scenarios the atomic 
broadcast is violated, even when there is a 
single communication domain. However, it 
is not compulsory that a node of 
ReCANcentrate deals with any of these 
inconsistent scenarios. First, because their 
probability of occurrence have been 
controversial [10]. Second, because they 
are not a new problem introduced by the 
use of media replication, but an old 
problem of CAN that can be solved using 
any of the modifications or additions to 
CAN that have been already proposed [9]. 
Furthermore, since ReCANcentrate is 
transparent for any CAN-based protocol, it 
can be used as their communication 
infrastructure anyway. Therefore, we 
exclude the treatment of the inconsistency 

scenarios of CAN from our replicated 
media management. 
Once a media fault is isolated, the 
following types of situations are possible. 
First, if the erroneous bits were generated 
by a hub, then it was isolated by the CAN 
controllers these bits were transmitted to, 
as well as by the corresponding interlink 
ports of the other hub, as already 
explained. A controller that isolates a hub 
will not notify its node of any further 
delivery event. Second, if the bits were 
generated by a cable, connector or 
transceiver used to attach a controller to a 
given hub, the corresponding hub port was 
disabled, so that the controller does not 
notify its node of any further transmission. 
Moreover, in this case, the controller also 
will eventually reach its error warning limit 
and the node will stop using it. However, 
notice that once the controller is isolated, it 
may continue receiving frames sent by 
other controllers, as long as it does not 
reach the error warning limit and there is 
at least one controller that acknowledges 
the frames in their ACK slot. This has no 
negative consequences and it is simply 
due to the fact that the hub continues 
broadcasting through the downlink of a 
port it has isolated. 
Taking into account all these 
considerations, we can assure that a 
media fault can only provoke what we call 
a notification omission discrepancy, i.e. it 
can only lead a node to observe that only 
one of its CAN controllers informs about 
the occurrence of a delivery event. 
Regarding faults happening at controllers, 
we analyze their effects following the well-
known categorization of failures proposed 
in [11]. We distinguish between crash and 
byzantine controller failures. When a 
controller exhibits a crash failure, it stops 
performing any action, so that it will not 
generate errors on the network and will 
notify its node about nothing. Thus, the 
node will observe a notification omission 
discrepancy thereafter. In the case of 
presenting a byzantine failure, the 
controller fails arbitrarily with no 
restrictions either in the value domain or in 
the time domain. A byzantine controller 
failure manifests at the side of the network 
by generating stuck-at or bit-flipping bits, 
as well as semantically incorrect frames. If 
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it generates erroneous bits, it will cause 
the same effects on the communication 
subsystem as a fault in any of the 
components that attach it to a given hub 
port and, hence, its node will only observe 
notification omission discrepancies. 
Semantically incorrect frames do not 
provoke discrepancies, but lead nodes to 
receive incorrect data as long as the hubs 
do not confine the failure. Once isolated, 
the controller acts as if it was isolated due 
to any of the failures already explained. 
Finally, when a byzantine failure leads a 
controller to deliver notifications that are 
arbitrarily incorrect, then not only 
notification omission discrepancies can 
occur, but also what we call a notification 
non-omission discrepancy. This 
discrepancy occurs whenever a node 
observes that its two controllers notify of a 
delivery event, but they do not coincide in 
the frame the event is related to. 

1.3. Treatment of discrepancies 

Each node treats discrepancies between 
the visions its two controllers have of a 
delivery event as follows. In what concerns 
a notification omission discrepancy, it can 
be provoked by both a fault in the media 
and any kind of failure of a controller, as 
explained before. Thus, when such a 
discrepancy occurs, it is not possible to 
elucidate which controller is faulty (or has 
problems for communicating). To 
overcome this problem, we propose to use 
a best-effort strategy that consists in 
assuming the notified event and its 
corresponding controller as correct, but 
without diagnosing the controller that omits 
it as faulty. If the notification was correct, it 
means that the controller that omitted it is 
faulty or was isolated by its hub due to a 
media fault. Thus, to accept the frame is 
correct because it allows the node to 
tolerate the fault. If the notification was 
actually incorrect, to accept it is wrong, but 
this situation can exclusively be provoked 
by a byzantine controller fault and we are 
not obliged to deal with it. This is because 
controller faults are an old problem of 
communication subsystems that we have 
not introduced, e.g. in a typical non-
redundant CAN bus, the controller of a 
node might forge notifications of 
transmissions and of receptions. 

Moreover, since we do not diagnose the 
correct controller (which omitted the 
notification) as faulty, at least we do not 
unfairly penalize it. 
In other replicated media schemes the 
decision of what to do when observing 
omissions cannot rely on a best-effort 
approach. This is because an omission 
would not happen between controllers but 
between channels and, thus, nodes should 
run an algorithm to reach a consensus 
about which channel is faulty. 
Regarding non-omission notification 
discrepancies, the node can use them to 
diagnose byzantine controller faults to 
some extent. In particular, a byzantine 
controller fault can be diagnosed when the 
notification from a faulty controller 
coincides in time with a notification of the 
correct controller, and both notifications 
refer to a different frame. Since when this 
happens, the node cannot know a priori 
which controller is actually faulty, it must 
stop communicating and run an internal 
test in order to make a decision. This 
capacity of fault diagnosis is an advantage 
of our approach compared with other 
solutions. Especially with respect to those 
that use only one CAN controller [6], since 
they cannot detect controller faults by 
means of a simple comparison. 

2. Replicated media management routines 

Next we briefly describe a possible 
implementation of the presented replicated 
media management. It consists in building 
a ReCANcentrate device driver that 
includes all the functionality needed to 
abstract away the details of both, the node 
structure and the media replication. This 
driver basically includes a reception and a 
transmission buffer, as well as a set of 
interrupt service routines to handle 
different communication events. 
Each controller is marked as playing one 
of the following roles: transmission 
controller or reception controller (Section 
3.1). A controller can also be marked as 
non-active, which indicates that it is not 
being used because it is faulty. 
The driver is devised to use CAN 
controllers that at least include three 
interrupts: a transmit interrupt, which 
originates whenever a frame has been 
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successfully transmitted; a reception 
interrupt, which triggers whenever a new 
frame has been received; and an error 
interrupt, which is launched when the error 
warning limit is reached. The driver 
assumes that all interrupts have the same 
priority, so that they cannot be nested. 

2.4. Transmission and reception routines 

The transmission routine and the reception 
routine respectively handle the transmit 
interrupt and the reception interrupt. When 
a delivery event occurs, it is expected that 
each controller of the node notifies of it by 
triggering one of these routines, which will 
be executed in the node’s micro-controller. 
It is worth noting that a node does not 
observe each bit in both stars exactly at 
the same instant of time, and that its 
controllers (and transceivers) have slightly 
different internal delays. Thus, when a 
delivery event occurs, one controller will 
be the first to interrupt the micro and will 
be served. Meanwhile the execution of the 
interrupt triggered by the other controller 
will be pending. However, as explained 
next, these two routines cooperatively 
handle the event. For the sake of 
simplicity, the routine executed first will be 
referred to as routine A, whereas the other 
as routine B. 
Besides performing the operations needed 
to handle a delivery event, the routines 
must check whether or not the notifications 
of both controllers refer to the same frame, 
in order to detect a possible notification 
non-omission discrepancy. Routine A 
performs this checking. If affirmative, the 
routine leaves an indication to inform 
routine B that it has validated the 
correspondence between the notifications, 
so that routine B does not have to check it 
again. Otherwise, routine A indicates to 
the application that a notification non-
omission discrepancy occurred. 
Note that since routine A is the one that is 
executed first, it has to give enough time 
to allow the trigger of routine B. If when 
this time expires, routine B has not been 
launched yet, routine A assumes that a 
notification omission discrepancy 
occurred, and goes ahead to perform 
alone the actions needed to handle the 
delivery event. 

In what concerns routine B, it must reset 
the indication (left by routine A) that 
informs about the correspondence 
between notifications. Otherwise, the 
execution of a routine corresponding to a 
future delivery event would accept an 
obsolete indication. Besides, routine B 
performs the actions needed to handle the 
delivery event, but without carrying out the 
operations already performed by routine A. 
This cooperation between the two routines 
is only possible if the micro executes them 
fast enough to prevent that a new delivery 
event occurs before they finish. Otherwise, 
a given routine could cooperate with a 
routine related to a later delivery event. 
The time for executing them must not 
exceed the time required for transmitting 
the shortest CAN remote frame [3]. 

 
 
 
Figure 3 depicts the general logic structure 
of the transmission routine. Recall that a 
frame transmitted by the transmission 
controller should be received by the 
reception controller. Thus, it is possible 
that a reception routine has been triggered 
and executed before. Therefore, the 
transmission routine checks if a former 
reception routine has indicated that it has 
validated the correspondence between the 
frame transmitted and received. If the 
result of this checking is affirmative, the 

Figure 3: Transmission routine 
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routine plays the role of routine B and it 
only needs to reset the indication, to notify 
the application of the successful 
transmission, and to release the 
transmission buffer of the controller. If the 
result of the checking is negative, the 
transmission routine acts as a routine A. It 
waits K units of time to give enough time 
to the reception controller to notify the 
reception of the transmitted frame. If the 
reception controller notifies the reception 
of a frame, and that frame coincides with 
the transmitted one, the transmission 
routine leaves an indication of this 
correspondence. Then, it notifies the 
application of the successful transmission, 
and releases the transmission buffer. 
Otherwise, if frames do not coincide, the 
routine notifies the application that a 
notification non-omission discrepancy 
occurred. Finally, if the reception controller 
does not notify the expected reception, a 
notification omission discrepancy 
occurred; the routine indicates this 
condition and goes ahead. 

 
 
 
Figure 4 depicts the general logic structure 
of the reception routine. It is analogous to 
the transmission routine. The main 

difference between them is that when 
reception routine acts as routine A, it must 
check whether the received frame is in fact 
a copy of the frame transmitted through 
the other controller, or in contrast, it is a 
frame transmitted by another node. 
To know if the former possibility has 
occurred, the routine inspects if the other 
controller is marked as the transmission 
controller and it has notified a successful 
transmission. If affirmative, the routine is 
the responsible for testing the 
correspondence between the frame it 
handles and the frame transmitted. If 
negative, it definitively abandons the 
possibility of handling a reception of a 
frame of its own node. 
When the routine knows that the unique 
possibility left is to be handling the 
reception of a frame sent by another node, 
it must check the correspondence with the 
frame that is expected to be received at 
the other controller. If this correspondence 
is successfully confirmed, the routine 
leaves an indication of it, transfers the 
received frame to the reception buffer of 
the driver, and releases the reception 
buffer of its corresponding controller. 

2.5. Quarantine routine 

The quarantine routine performs the 
actions needed when a controller is 
diagnosed as faulty. On the one hand, this 
routine is executed one time for each 
controller when a notification non-omission 
discrepancy occurs. On the other hand, it 
is triggered when a controller reaches its 
error warning limit (Section 3.1). When the 
routine executes due to a notification non-
omission discrepancy, it resets the 
controllers and performs a test to 
determine which of them is faulty. 
If the routine is triggered because a given 
controller reaches the error warning limit, it 
marks that controller as non-active, and 
further performs the following actions. If 
the other controller is also marked as non-
active, the routine notifies the application 
that it is not possible to communicate with 
the other nodes. If the other controller is 
not marked as non-active, and the 
controller the routine is executing for was 
the transmission controller, the routine 
marks the other controller as the 
transmission controller. Additionally, if the 

Figure 4: Reception routine 
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application is waiting for the result of a 
transmission request, the routine notifies 
that such request was not granted, so that 
the application can request the 
transmission using the surviving controller. 

3. Conclusions 

One of the major objections against using 
CAN as the communication infrastructure 
of safety-critical distributed control 
systems is that its non-redundant bus 
topology lacks the appropriate error-
containment and fault tolerance 
mechanisms. To provide these 
mechanisms, we developed a replicated 
star topology called ReCANcentrate, in 
which data is transmitted in parallel 
through both stars. A special coupling 
between both hubs creates a single 
communication domain or logical channel, 
so that each node quasi-simultaneously 
receives each bit from both hubs. 
The enforcement of this single 
communication domain simplifies the 
management of the replicated traffic each 
node has to perform. In this paper we 
describe this management and propose a 
particular implementation using COTS 
components. 
Specifically, each node includes two CAN 
controllers, each one connected to a 
different star. Differentiating duplicated 
from omitted frames is straightforward, 
since each frame is quasi-simultaneously 
broadcasted by both hubs, and faults in 
the media or at controllers cannot provoke 
that each hub broadcasts a given frame at 
a different instant of time. A media fault 
may only lead one or more nodes to 
observe that one of its controllers cannot 
access the channel or does not notify 
about the frames that are exchanged 
through the network. This is tolerated just 
by communicating through the controller 
that can correctly access the channel. 
Byzantine controller faults may further lead 
its node to observe that both controllers do 
not agree on which frames are being 
exchanged in the network. We are not 
obliged to deal with these situations, since 
they are not introduced by the use of a 
replicated media scheme. Thus, the node 
manages these situations following a best-
effort approach. Moreover, beyond the 
capacity of other replicated media 

architectures, a node of ReCANcentrate 
can diagnose, to some extent, controller 
malicious faults. 
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