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This paper describes CAN application in a modular robot system. RobMAT is made up 
of modules that form a new structure called molecule when they are joined together. 
Every molecule has a master module, which is in charge of receiving external 
message and retransmitting to the rest of the modules by CAN bus. The message 
contains all related information about movement control references, sensor data and 
module synchronization. CAN features allow faster transmission of up to 1Mbit/s. It is 
also flexible to connecting another CAN device. Such features make CAN appropriate 
for this application. Task performance using modular robots requires flawless 
communication among modules; therefore, synchronization is a key factor to take into 
account where in CAN plays an important role. The importance of synchronization 
requires a dedicated mailbox to manage it among the modules. Each module comes 
with a clock in order to process information by itself and correspondingly 
synchronize. Among the modules, one module has the master clock pulse that has to 
be transmitted to the rest of the modules of the molecule for readjustment of time. The 
experiments highlight the excellent performance of synchronization in crucial task. 

 
In recent years there has been an 
increasing interest in modular robotic 
systems. These systems aim to carry out a 
number of tasks by teams of collaborating 
robots instead of being completed for one 
simple robot. Modular robotic systems are 
less task-specialized than industrial 
robots; nevertheless a greater quantity of 
them is necessary in order to deal with 
tasks which one specifically designed 
robot could not do. Actually, the challenge 
of these robots lies in coordinating several 
robots to obtain a common objective with a 
cooperative behavior. 
A good example of team robots are 
modular and reconfigurable robots, as 
they form metamorphic structures that are 
made up of modules, generally identical, 
which have to work in a coordinated 
fashion giving uniform behavior to the 
colony. Their ability of rearranging their 
modules to adapt to different 
configurations allows them to cope with 
many tasks, and consequently increase 
their performance. The main objective of 
modularity is that functionality of the whole 
is greater than the sum of the functionality 

of each component. The concept of 
modularity applied in robotics allows 
making a wide variety of specialized 
kinematic configuration from a reduced set 
of standard components. However, the 
development of modular robots has 
specific features that have to be solved in 
order to obtain the desired performance. 
Most of them are related to control 
architecture, modular mechanical design 
and reconfiguration processes. 
In modular robotics, control architecture 
takes on special functions like 
communication and synchronization 
among modules, or when and how 
modules have to change their 
configuration. Therefore, modular robot 
architectures can be proposed in several 
ways, for example, when coupling among 
modules is done mechanically, 
hierarchical or centralized architectures 
are normally implemented such as PolyBot 
(Yim et al., 2002) or M-TRAN (Kurokawa 
et al., 2002) systems. On the other hand, 
when module coupling is not mechanical, 
like networked robots (McKee and 
Schenker, 2000), distributed and 
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decentralized architectures are used.  
Examples of them are robot systems 
based on colonies (Navarro-Serment et 
al., 2002) and (Caprari et al., 2002). 
In the RobMAT project CAN plays a key 
role in the synchronization among 
modules. Its use is innovative because its 
application is not really common in other 
projects with same features. Just in 
PolyBot (Yim et al., 2002) has been used 
before, but its assignment is to transfer 
information, so nothing to do with the 
synchronization. 
This paper has been organized as follows. 
Section 1 describes the RobMAT control 
architecture, which explains 
communication and synchronization 
among modules. Section 2 is focused on 
the role that the standard CAN plays in the 
synchronization among modules and 
section 3 refers to the rest of tasks where 
Can is involved in. Section 4 details a real 
test done with the prototype and section 5 
is about the current situation of CAN’s 
development inside the project. Finally, 
main conclusions from this work about the 
influence and the application of the CAN 
bus are summarized in the last section. 

1. Control Architecture of the RobMAT 
System 

RobMAT architecture is based on modular 
and molecular components being all of 
them one colony. Module is the simplest 
part which has movement and 
communication facilities. A molecule is an 
autonomous robot which is made up of 
modules. Therefore molecules can have 
different configurations. Each molecule 
has a master module and the rest of the 
modules have a slave role. Later on, 
master and slave roles will be described. 
Finally, the colony is remotely commanded 
by a human operator by means of 
teleoperation interface. Figure 1 shows the 
main components of the RobMAT 
architecture. 
 

 
Figure 1: Main components of RobMAT 
architecture 
 
The module designed for the RobMAT 
system attempts to reach a balance 
between complexity of design and 
performance. The goal is to obtain a very 
functional module able to execute different 
kind of tasks. However, it is always kept in 
mind that the module must be simple in 
comparison with the complexity of the 
molecule. With these criterias a module is 
developed which can form very functional 
molecules comprised of only a few 
modules. Figure 2 shows the module 
designed. 
 

 
Figure 2: Module of RobMAT 
 
The molecule is a robot formed by various 
modules which are joined together, as is 
shown in figure 4. The molecule with the 
fewest modules which has sufficient 
autonomy is called base molecule; two 
modules form this molecule, as is shown 
in figure 3. Adding suitable tools to a base 
molecule allows itself to meet several of 
the demands for a robot. 
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Figure 3: The base molecule 
 

 
Figure 4: Complex molecule composed 
of 2 base molecules 
 
The molecule has robot functionality. It 
receives commands from the operator and 
the rest of the colony that can be executed 
autonomously. Hence inter-molecule 
communication is necessary. Operator’s 
messages among molecules are 
transmitted via Bluetooth protocol. Another 
communication which involves modules in 
the architecture is the intra-molecule 
communications which are transmitted via 
CAN bus (CAN Specification Version 2.0, 
1991). 
In order to adapt these two channels of 
communication each molecule chooses 
one module as a master and automatically 
the rest of the modules become slaves. 
Note that any module could be a master 
because they all have the same 
functionality. The master module is in 
charge of managing the wireless 
communication. It receives the commands 
sent by Bluetooth and then retransmits the 
proper information to the corresponding 

slave module via CAN bus. Also, it sends 
messages through a Bluetooth device to 
the colony. Slave modules disable their 
Bluetooth device and only the CAN bus is 
used for communication purposes. 
Another function of the master module is 
to generate a synchronization signal which 
is described thoroughly in the next section. 
Basically, it is a short CAN message that 
fixes period and phase of all module 
clocks as the master clock. 

2. The synchronization of modules 

The molecule has a robot behavior thanks 
to the module synchronization. This global 
behavior is required to move the molecule 
as a unit. This is a key point in order to 
implement a collaborative behavior for the 
team robot. For example, in order to push 
or carry on something heavy, modular 
robots require simultaneously the same 
parallel movement sharing its forces and 
creating a new force higher than the sum 
of the modules used. In other words, it 
allows starting and finishing all joint 
movements in a module simultaneously. 
With this attribute it is possible the 
execution of complex tasks.  
One of the problems in distributed 
computational systems is the lack of a 
global clock (Chow and Johnson, 1997). 
This is a handicap to carry out concurrent 
actions in a coordinated way. Several 
approaches have been proposed to 
overcome this problem and the most used 
is the message-passing method (Xu, 
1990). From the computational point of 
view modular robots are a set of 
processing units joined by a 
communication bus. Therefore, message-
passing methods fit as a possible solution 
to synchronization problems in modular 
robots. However lots of messages are 
needed to synchronize the different 
processes. We propose a discrete time 
closed-loop method which keeps all 
system clocks in the same phase and 
period using a single short message in 
every cycle. The period of that cycle can 
be much longer (seconds) than a control 
cycle period (milliseconds, typically the 
period of timer interruption). 
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The chip used in each module is a DSP 
and is in charge of the operation of its 
module. The DSP has a special device to 
develop CAN communications. This is 
called eCAN module and has two features 
that are necessary to generate the method 
to synchronize. Firstly it has 32 mailboxes 
to send and receive diverse information 
and secondly, it can develop interrupts 
when a message has been sent or has 
been received successfully. 
The method needs a periodical signal 
which acts as a trigger for the closed loop. 
This signal is generated by the master 
module every N control modules and 
consists in a high priority short CAN 
message. It is supposed, with neglected 
error, that all modules receive the 
message at the same time. Each time that 
message is received, a local timer (ticks 
counter) is reseted and its previous values 
are used to correct the local timer period. 
Eq. (1), i.e., there is a counter that counts 
the ticks of a local timer (ticks of DSP 
clock) between every two consecutive 
synchronizing signals. When a 
synchronizing message comes in a current 
counter value is used to recalculate the 
local timer period. After, the counter is 
reseted (note that this process happens in 
every module). 
 

1i

C T t
T

N
+

! +
=  

Where: 
C: Number of control cycles. 
Ti: Current local timer period. 
t: Current cycle timer ticks. 

N: Control cycles per synchronizing period. 
 

Basically the master module creates 
synchronization signal. It counts the 
number of interruptions generated by its 
timer and when it reaches to 300 of them, 
produces a message and delivers it to the 
slave modules. These ones have to 
receive the message and readjust the 
period of their timer. To pick up the 
synchronization signal, a low level 
interrupt associated to the successful  

 
Figure 5: Signals in the process of 
synchronization 
 
reception of a message in a defined 
mailbox, is programmed. So, once the 
message has been received, the period of 
every slave timer is recalculated following 
the formula above. 
The setting point is the amount of control 
cycles (N) per synchronizing period. After 
some synchronizing cycles all clocks have 
the same phase and period. As is shown 
in figure 5. In this way actions can be 
executed in a coordinated manner. 
This algorithm for module synchronization 
allows a cooperative module behavior. For 
example, using the above method the 
maximum difference at the 
starting/stopping time among any motor is 
below one mili-second. Synchronization is 
required in order to execute properly 
trajectories, in other case strong forces 
can be happen during manipulation tasks. 

3. Data transfer 

Apart from the synchronization among 
modules, CAN is also used to transfer the 
references that are sent by the control 
station to the modules.  
The control station (a common PC) 
communicates with the master module by 
Bluetooth. Then, the master slave 
manages to retransmit all the references 
sent by the PC to the rest of the slave 
modules to close their control loops and 
move their actuators in agreement to the 
references. 
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As the role of master is fixed and never 
changes during the operation, it will be 
always the transmitter of the bus and the 
slaves the receivers.  
 

Bluetooth
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MBOX

Slave Control Loop

MBOX

1: references

2: master 
references

3: slave references

4: slave references

5: slave 
references

MASTER SLAVE

 
Figure 6 Data transfer scheme 
  

4. Example of synchronization: four module 
complex molecule 

As synchronization is the key concept of 
this field of robotics, many real tests are 
always done to ensure its proper 
operation. Next, an example of the 
behavior of the synchronization is going to 
be analyzed when the topology of CAN 
network has more than one slave module. 
Looking at figure 7, there are two base 
molecules forming a complex one and 
trying to walk as a unit.  
The movement pattern in a complex 
structure is always inspired in the way that 
an animal moves. In this case, there is a 
four legged structure which has no knees 
in the legs, thus, the most similar animal 
with these physical features is a turtle. 
This means that the complex molecule’s 
movement pattern is going to be exactly 
the same. At the beginning, the two front 
legs have to take a step forward. Once it 
has been finished, the hole body of the 
complex structure must be moved to the 
front and finally two back legs complete 
the sequence recovering their original 
position in the complex molecule.  
In this situation synchronization plays a 
major role because there are many 

modules involved in operation. These 
ones are at different distances from the 
master module so, to get movements 
coordinated, synchronization signal must 
be received at the same time by all of 
them. The movement must be 
homogeneus, otherwise complex 
molecules’s balance would get lost and 
displacement could not be finished. 
Fortunately, CAN’s transmission rate is 
fast enough to fit these demands as is 
shown in figure 7. 
  

 
Figure 7 Four module complex 
molecule 

5. Present working area 

Actually we are working on the 
encapsulation of the communications and 
synchronization.This is a key work to 
achieve future complex developments.  
Basically the main objective of this task is 
to make the use of CAN more flexible and 
more modular. This will suppose that 
future developers of the RobMAT will 
understand the application of CAN in this 
project easier than before. By this means 
they will be able to design new code to 
manipulate the bus standard and take 
more advantage of it. 
The way of encapsulating communications 
and synchronization consist on 
redesigning all the code using an object-
oriented programmation language. Thus, 
we can declare objects that have all CAN 
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features defined inside and use them to 
develop new tasks and objectives. At the 
moment two classes are finished so two 
kind of objects can be used. The first one 
is made to manipulate CAN’s basic 
features like the transmission rate, volume 
of data transferred in each message, 
number of mailboxes involved…. The 
other inherits all the characteristics of the 
first one and is focused on the 
synchronization. So to manage a base 
molecule, an object of the second one is 
needed, but if an additional mailbox is 
required in case of necessity the first one 
could be used. 

6. Conclusions and future works 

CAN is the best bus standard that suits 
RobMAT project. It brings good 
communication performances for 
embedded real time systems. Its 
bandwidth is 1Mbit/s; so it allows sending 
low level commands, i.e. position 
references, synchronization of joint 
movements and messages to coordinate 
actions from different modules in the 
molecule. 
For the future more profit has to be taken 
from its capability of sending information. 
Actually just to mailboxes are used, one 
for the signal of synchronization and 
another for the references. As more 
sensors are introduced in a base 
molecule, more mailboxes have to be 
used to send more data information. 
Another point of interest will be the use of 
CAN standard to change module status 
dynamically. In advance one mailbox 
could be reserved to send each module’s 
status in order to change it when the base 
molecules are going to alter their 
configuration. Thus at the time of forming 
a complex molecule, involved base 
molecules will have to discuss which of 
their modules will be the master of the 
hole new structure. This could be a fact 
that would make base molecules more 
indepent to get other configurations and to 
form new modular robotic systems.  
Consequently much work has done to 
reach to the actual point, but much more 
will be done in the future to develop new 
features. 
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