
iCC 2008 CAN in Automation

01-1

CAN Application in Modular Systems

Andoni Crespo, José Baca, Ariadna Yerpes, Manuel Ferre,

Rafael Aracil and Juan A. Escalera

 – Universidad Politécnica de Madrid, Spain –

This paper describes CAN application in a modular robot system. RobMAT is made up
of modules that form a new structure called molecule when they are joined together.
Every molecule has a master module, which is in charge of receiving external
message and retransmitting to the rest of the modules by CAN bus. The message
contains all related information about movement control references, sensor data and
module synchronization. CAN features allow faster transmission of up to 1Mbit/s. It is
also flexible to connecting another CAN device. Such features make CAN appropriate
for this application. Task performance using modular robots requires flawless
communication among modules; therefore, synchronization is a key factor to take into
account where in CAN plays an important role. The importance of synchronization
requires a dedicated mailbox to manage it among the modules. Each module comes
with a clock in order to process information by itself and correspondingly
synchronize. Among the modules, one module has the master clock pulse that has to
be transmitted to the rest of the modules of the molecule for readjustment of time. The
experiments highlight the excellent performance of synchronization in crucial task.

In recent years there has been an
increasing interest in modular robotic
systems. These systems aim to carry out a
number of tasks by teams of collaborating
robots instead of being completed for one
simple robot. Modular robotic systems are
less task-specialized than industrial
robots; nevertheless a greater quantity of
them is necessary in order to deal with
tasks which one specifically designed
robot could not do. Actually, the challenge
of these robots lies in coordinating several
robots to obtain a common objective with a
cooperative behavior.
A good example of team robots are
modular and reconfigurable robots, as
they form metamorphic structures that are
made up of modules, generally identical,
which have to work in a coordinated
fashion giving uniform behavior to the
colony. Their ability of rearranging their
modules to adapt to different
configurations allows them to cope with
many tasks, and consequently increase
their performance. The main objective of
modularity is that functionality of the whole
is greater than the sum of the functionality

of each component. The concept of
modularity applied in robotics allows
making a wide variety of specialized
kinematic configuration from a reduced set
of standard components. However, the
development of modular robots has
specific features that have to be solved in
order to obtain the desired performance.
Most of them are related to control
architecture, modular mechanical design
and reconfiguration processes.
In modular robotics, control architecture
takes on special functions like
communication and synchronization
among modules, or when and how
modules have to change their
configuration. Therefore, modular robot
architectures can be proposed in several
ways, for example, when coupling among
modules is done mechanically,
hierarchical or centralized architectures
are normally implemented such as PolyBot
(Yim et al., 2002) or M-TRAN (Kurokawa
et al., 2002) systems. On the other hand,
when module coupling is not mechanical,
like networked robots (McKee and
Schenker, 2000), distributed and

iCC 2008 CAN in Automation

01-2

decentralized architectures are used.
Examples of them are robot systems
based on colonies (Navarro-Serment et
al., 2002) and (Caprari et al., 2002).
In the RobMAT project CAN plays a key
role in the synchronization among
modules. Its use is innovative because its
application is not really common in other
projects with same features. Just in
PolyBot (Yim et al., 2002) has been used
before, but its assignment is to transfer
information, so nothing to do with the
synchronization.
This paper has been organized as follows.
Section 1 describes the RobMAT control
architecture, which explains
communication and synchronization
among modules. Section 2 is focused on
the role that the standard CAN plays in the
synchronization among modules and
section 3 refers to the rest of tasks where
Can is involved in. Section 4 details a real
test done with the prototype and section 5
is about the current situation of CAN’s
development inside the project. Finally,
main conclusions from this work about the
influence and the application of the CAN
bus are summarized in the last section.

1. Control Architecture of the RobMAT
System

RobMAT architecture is based on modular
and molecular components being all of
them one colony. Module is the simplest
part which has movement and
communication facilities. A molecule is an
autonomous robot which is made up of
modules. Therefore molecules can have
different configurations. Each molecule
has a master module and the rest of the
modules have a slave role. Later on,
master and slave roles will be described.
Finally, the colony is remotely commanded
by a human operator by means of
teleoperation interface. Figure 1 shows the
main components of the RobMAT
architecture.

Figure 1: Main components of RobMAT
architecture

The module designed for the RobMAT
system attempts to reach a balance
between complexity of design and
performance. The goal is to obtain a very
functional module able to execute different
kind of tasks. However, it is always kept in
mind that the module must be simple in
comparison with the complexity of the
molecule. With these criterias a module is
developed which can form very functional
molecules comprised of only a few
modules. Figure 2 shows the module
designed.

Figure 2: Module of RobMAT

The molecule is a robot formed by various
modules which are joined together, as is
shown in figure 4. The molecule with the
fewest modules which has sufficient
autonomy is called base molecule; two
modules form this molecule, as is shown
in figure 3. Adding suitable tools to a base
molecule allows itself to meet several of
the demands for a robot.

iCC 2008 CAN in Automation

01-3

Figure 3: The base molecule

Figure 4: Complex molecule composed
of 2 base molecules

The molecule has robot functionality. It
receives commands from the operator and
the rest of the colony that can be executed
autonomously. Hence inter-molecule
communication is necessary. Operator’s
messages among molecules are
transmitted via Bluetooth protocol. Another
communication which involves modules in
the architecture is the intra-molecule
communications which are transmitted via
CAN bus (CAN Specification Version 2.0,
1991).
In order to adapt these two channels of
communication each molecule chooses
one module as a master and automatically
the rest of the modules become slaves.
Note that any module could be a master
because they all have the same
functionality. The master module is in
charge of managing the wireless
communication. It receives the commands
sent by Bluetooth and then retransmits the
proper information to the corresponding

slave module via CAN bus. Also, it sends
messages through a Bluetooth device to
the colony. Slave modules disable their
Bluetooth device and only the CAN bus is
used for communication purposes.
Another function of the master module is
to generate a synchronization signal which
is described thoroughly in the next section.
Basically, it is a short CAN message that
fixes period and phase of all module
clocks as the master clock.

2. The synchronization of modules

The molecule has a robot behavior thanks
to the module synchronization. This global
behavior is required to move the molecule
as a unit. This is a key point in order to
implement a collaborative behavior for the
team robot. For example, in order to push
or carry on something heavy, modular
robots require simultaneously the same
parallel movement sharing its forces and
creating a new force higher than the sum
of the modules used. In other words, it
allows starting and finishing all joint
movements in a module simultaneously.
With this attribute it is possible the
execution of complex tasks.
One of the problems in distributed
computational systems is the lack of a
global clock (Chow and Johnson, 1997).
This is a handicap to carry out concurrent
actions in a coordinated way. Several
approaches have been proposed to
overcome this problem and the most used
is the message-passing method (Xu,
1990). From the computational point of
view modular robots are a set of
processing units joined by a
communication bus. Therefore, message-
passing methods fit as a possible solution
to synchronization problems in modular
robots. However lots of messages are
needed to synchronize the different
processes. We propose a discrete time
closed-loop method which keeps all
system clocks in the same phase and
period using a single short message in
every cycle. The period of that cycle can
be much longer (seconds) than a control
cycle period (milliseconds, typically the
period of timer interruption).

iCC 2008 CAN in Automation

01-4

The chip used in each module is a DSP
and is in charge of the operation of its
module. The DSP has a special device to
develop CAN communications. This is
called eCAN module and has two features
that are necessary to generate the method
to synchronize. Firstly it has 32 mailboxes
to send and receive diverse information
and secondly, it can develop interrupts
when a message has been sent or has
been received successfully.
The method needs a periodical signal
which acts as a trigger for the closed loop.
This signal is generated by the master
module every N control modules and
consists in a high priority short CAN
message. It is supposed, with neglected
error, that all modules receive the
message at the same time. Each time that
message is received, a local timer (ticks
counter) is reseted and its previous values
are used to correct the local timer period.
Eq. (1), i.e., there is a counter that counts
the ticks of a local timer (ticks of DSP
clock) between every two consecutive
synchronizing signals. When a
synchronizing message comes in a current
counter value is used to recalculate the
local timer period. After, the counter is
reseted (note that this process happens in
every module).

1i

C T t
T

N
+

! +
=

Where:
C: Number of control cycles.
Ti: Current local timer period.
t: Current cycle timer ticks.

N: Control cycles per synchronizing period.

Basically the master module creates
synchronization signal. It counts the
number of interruptions generated by its
timer and when it reaches to 300 of them,
produces a message and delivers it to the
slave modules. These ones have to
receive the message and readjust the
period of their timer. To pick up the
synchronization signal, a low level
interrupt associated to the successful

Figure 5: Signals in the process of
synchronization

reception of a message in a defined
mailbox, is programmed. So, once the
message has been received, the period of
every slave timer is recalculated following
the formula above.
The setting point is the amount of control
cycles (N) per synchronizing period. After
some synchronizing cycles all clocks have
the same phase and period. As is shown
in figure 5. In this way actions can be
executed in a coordinated manner.
This algorithm for module synchronization
allows a cooperative module behavior. For
example, using the above method the
maximum difference at the
starting/stopping time among any motor is
below one mili-second. Synchronization is
required in order to execute properly
trajectories, in other case strong forces
can be happen during manipulation tasks.

3. Data transfer

Apart from the synchronization among
modules, CAN is also used to transfer the
references that are sent by the control
station to the modules.
The control station (a common PC)
communicates with the master module by
Bluetooth. Then, the master slave
manages to retransmit all the references
sent by the PC to the rest of the slave
modules to close their control loops and
move their actuators in agreement to the
references.

iCC 2008 CAN in Automation

01-5

As the role of master is fixed and never
changes during the operation, it will be
always the transmitter of the bus and the
slaves the receivers.

Bluetooth

Control station

Master Control Lop

MBOX

Slave Control Loop

MBOX

1: references

2: master
references

3: slave references

4: slave references

5: slave
references

MASTER SLAVE

Figure 6 Data transfer scheme

4. Example of synchronization: four module
complex molecule

As synchronization is the key concept of
this field of robotics, many real tests are
always done to ensure its proper
operation. Next, an example of the
behavior of the synchronization is going to
be analyzed when the topology of CAN
network has more than one slave module.
Looking at figure 7, there are two base
molecules forming a complex one and
trying to walk as a unit.
The movement pattern in a complex
structure is always inspired in the way that
an animal moves. In this case, there is a
four legged structure which has no knees
in the legs, thus, the most similar animal
with these physical features is a turtle.
This means that the complex molecule’s
movement pattern is going to be exactly
the same. At the beginning, the two front
legs have to take a step forward. Once it
has been finished, the hole body of the
complex structure must be moved to the
front and finally two back legs complete
the sequence recovering their original
position in the complex molecule.
In this situation synchronization plays a
major role because there are many

modules involved in operation. These
ones are at different distances from the
master module so, to get movements
coordinated, synchronization signal must
be received at the same time by all of
them. The movement must be
homogeneus, otherwise complex
molecules’s balance would get lost and
displacement could not be finished.
Fortunately, CAN’s transmission rate is
fast enough to fit these demands as is
shown in figure 7.

Figure 7 Four module complex
molecule

5. Present working area

Actually we are working on the
encapsulation of the communications and
synchronization.This is a key work to
achieve future complex developments.
Basically the main objective of this task is
to make the use of CAN more flexible and
more modular. This will suppose that
future developers of the RobMAT will
understand the application of CAN in this
project easier than before. By this means
they will be able to design new code to
manipulate the bus standard and take
more advantage of it.
The way of encapsulating communications
and synchronization consist on
redesigning all the code using an object-
oriented programmation language. Thus,
we can declare objects that have all CAN

iCC 2008 CAN in Automation

01-6

features defined inside and use them to
develop new tasks and objectives. At the
moment two classes are finished so two
kind of objects can be used. The first one
is made to manipulate CAN’s basic
features like the transmission rate, volume
of data transferred in each message,
number of mailboxes involved…. The
other inherits all the characteristics of the
first one and is focused on the
synchronization. So to manage a base
molecule, an object of the second one is
needed, but if an additional mailbox is
required in case of necessity the first one
could be used.

6. Conclusions and future works

CAN is the best bus standard that suits
RobMAT project. It brings good
communication performances for
embedded real time systems. Its
bandwidth is 1Mbit/s; so it allows sending
low level commands, i.e. position
references, synchronization of joint
movements and messages to coordinate
actions from different modules in the
molecule.
For the future more profit has to be taken
from its capability of sending information.
Actually just to mailboxes are used, one
for the signal of synchronization and
another for the references. As more
sensors are introduced in a base
molecule, more mailboxes have to be
used to send more data information.
Another point of interest will be the use of
CAN standard to change module status
dynamically. In advance one mailbox
could be reserved to send each module’s
status in order to change it when the base
molecules are going to alter their
configuration. Thus at the time of forming
a complex molecule, involved base
molecules will have to discuss which of
their modules will be the master of the
hole new structure. This could be a fact
that would make base molecules more
indepent to get other configurations and to
form new modular robotic systems.
Consequently much work has done to
reach to the actual point, but much more
will be done in the future to develop new
features.

Acknowledgements

This work has been partially supported by
the Ministerio de Educación y Ciencia of
the Spanish Government under CICYT-
DPI program by the grant DPI2003-00759.

iCC 2008 CAN in Automation

01-7

Andoni Crespo
Department of Control Engineering
Universidad Politécnica de Madrid
acrespo@etsii.upm.es

José Baca
Department of Control Engineering
Universidad Politécnica de Madrid
jbaca@etsii.upm.es

Ariadna Yerpes
Department of Control Engineering
Universidad Politécnica de Madrid
ayerpes@ etsii.upm.es

Jose A. Escalera
Department of Control Engineering
Universidad Politécnica de Madrid
jescalera@etsii.upm.es

Manuel Ferre
Department of Control Engineering
Universidad Politécnica de Madrid
+34 91 336 30 61
+34 91 336 30 10
mferre@etsii.upm.es
http://www.disam.upm.es/grmi/UPM-
DISAM%20Manuel%20Ferre.htm

Rafael Aracil
Department of Control Engineering
Universidad Politécnica de Madrid
+34 91 336 30 61

+34 91 336 30 10
aracil@etsii.upm.es
http://www.disam.upm.es/grmi/UPM-
DISAM%20Rafael%20Aracil.htm

References
[1] Modular and Self-Configurable Team Robots

for Unstructured Environments (2007).
Escalera, J., Ferre, M., Aracil, R., Hernámdez,
C.

[2] Base molecule design and simulation of a
modular robot robmat (2005). Escalera, J.,
Saltaren, R., Ferre, M., Aracil, R., Garca, C.. In
Proceeding of 16th IFAC World Congress,
Prague, Czech Republic.

[3] CAN Specificaion Version 2.0 (1991).
Retrieved January 12, 2006, from
http://www.wisc.edu/writest/Handbook/DocAP
A.html.

[4] CAN System Engineering: From Theory to
Prctical applications (1997). Lawrenz, W.

[5] PolyBot: a Modular Reconfigurable Robot
(2000). Proc. Of the IEEE Int. Conf. on
Robotics and Automation, April 2000. Yim,
M., Duff, D., Roufas, K.

