
iCC 2008 CAN in Automation

03-1

CANopen-controlled personnel interlock system
at DESY

Rüdiger Härtel, port GmbH
Stefan May, DESY

A personnel interlock system is a safety critical part in an accelerator. It switches off
all relevant radiation sources in case of danger, e.g. klystrons, magnets and particle
sources. The personnel interlock system at DESY is a logical circuit made up of relays
that are hardwired to emergency off switches, access doors, safety key boxes, beam
shutters and other dry contacts. The interlock software monitors each relay with a
current monitor (optocoupler) and a bottom contact. To operate an accelerator, a
warning procedure with optical and acoustical warnings is required. The interlock
software controls the warning procedure by influencing the current path in the relay
circuit. If any of the signals going into the relay circuit is missing, beam operation is
denied or withdrawn. All safety critical paths are realized with the relays only, the
interlock software must not have any safety critical tasks. Besides the safety critical
aspect, personnel interlock systems must provide high availability to ensure long
operation times. This applies especially to the interlock software and its components.

CANopen based modules are used by the personnel interlock system to monitor the
relays with a current monitor and a bottom contact. The personnel interlock software
had to be overhauled from ground up. The new system had to be integrated into the
existing interlock hardware infrastructure and makes use of standard CANopen means
for configuration of CANopen modules (CiA-302-2) and process image processing
(CiA-405). This paper discusses the used system architecture and aspects of
integrating CANopen to Java.

Introduction

The German Electron Synchrotron DESY,
Member of the Helmholtz Association, is
one of the leading accelerator centers in
the world in the research fields structure of
matter and photon science. DESY is a
national research center supported by
public funds and has locations in Hamburg
and Zeuthen (Brandenburg). DESY
develops and builds large facilities for the
acceleration of particles to extremely high
energies.

A personnel interlock system is used to
ensure safety for researchers and staff
working at the accelerator. It permits and
restricts access to the inner bounds of the
accelerator ring. Before operation of the
accelerator is permitted a special warning
procedure is carried out to check if all
signals report OK state.

The system described in this paper is used
at the moment in the accelerators Linac2
and DESY2 and comprises
• 4 CAN lines,
• 38 CANopen I/O nodes,
• 254 relays and
• 2 field computers.
Other accelerators at DESY will be
equipped with this system in future.

The radiation does not allow to place
electronical device directly with in the
accelerator. The radiation would cause
defects in the silicon of the processors that
are used in the devices. Therefore all
signals are hardwired to relays outside of
the accelerator. This is an import aspect
for the safetyness of the system.

The existing system at DESY was to be
overhauled and to be replaced with a

iCC 2008 CAN in Automation

 03-2

system that makes better use of the
communication mechanisms CANopen
provides. The new system consists of
• a CANopen Manager,
• a Process Controller (CANopen slave)

providing the process image to the
control application through a Java
binding and

• several I/O modules.

Figure 1: Application Overview

The software for the CANopen Manager
and the Process Controller runs on an
industrial PC with multiple CAN interfaces.
The can4linux was extended to allow one
CAN interface to be used by more than
one process. The used operating system
is Linux.

CAN Communication

The preferred communication principle of
the CANopen protocol is asynchronous
communication driven by events of the
devices in an decentralized infrastructure.
This approach is followed as closely as
possible in the new system.

The Network Management (NMT-Master)
is in most cases used within the control
application. This combination is often
used but not required. With the
decentralized approach the NMT function-
ality was separated into an own pro-
gramme which fulfills the task of device
configuration and starting the network.

The functionality of collecting process
data, emergency data and node moni-
toring is another programme which is a
normal CANopen slave, the Process
Controller.

I/O modules provide the digital and
analogue signals (inputs) as process data
(inputs) and use process data to write to
digital and analogue outputs.

The majority of CANopen devices and the
Linux PC are all placed in the same
cabinet. The bus length is short and a
bitrate of 500 KBit/s is used. Other
CANopen devices like blinking lamps or
tableaus are placed in the field. Due to
the long distances (some hundred meters)
the used baudrate is 20 KBit/s.

The safetyness of the signals is provided
by the hardwiring. The CAN bus itself is
not considered as safety critical. No
special precautions for safe transmission
like the CiA 304 are used. For data con-
sistency PDO are configured as asynchro-
nous with an event timer.

I/O Modules

CANopen has a large base of device
profiles. The modules used in this system
conform to the profile CiA 401. This
guarantees exchangibility of the modules
and independency from a single I/O
module manufacturer.

iCC 2008 CAN in Automation

03-3

Process Controller

The connection between the I/O modules
and the interlock software is established
by the Process Controller (figure 1).
Process data, emergency messages, SDO
accesses to the local object dictionary and
node failures are passed through method
calls over JNI to the interlock software. For
the CANopen Manager the Process
Controller is a normal slave like any of the
I/O module. From application perspective
can be seen as the master.

For the group MPS at DESY, Java is the
standard programming language. The
CANopen library which is implemented in
C needed to be interfaced with Java
[ShengLiang]. Instead of making a 1:1
mapping of the C API to a Java API the
Java API was inspired by the function
blocks from the CiA 405 to access the
CANopen network.

The Java class PortCanOpenObjectDict-
ionary provides access to all CANopen
objects of the Process Controller itself that
are available in the C implementation.
CANopen objects are OdEntry and can be
addressed by index, subindex or by Para-
meterName and Denotation respect-ively.
The information of the parameter names
or denotation is read from the device
configuration file (DCF). A new value for a
OdEntry can be set with the method update.

The CiA 405 defines a function block only
for the emergency event. Other asynchro-
nous events like heartbeat error or PDO
have no function block. The Java API was

designed in that way that all asynchronous
events are reported via update methods.
Emergency data is provided in its own
class EmergencyError. A heartbeat error
provides the node id and node state. For
PDO mapped objects update is called
separately for each object. For sending a
new data item with a PDO the Java
application writes a new value to the
CanOpenObjectDictionary. The CANopen
object is searched in the C implementation
of the CANopen object dictionary and then
sent.

Actively the Process Controller does not
use SDO for communication with I/O
modules. It only receives data via PDO
from the I/O modules. Write accesses to
the object dictionary are handled like PDO.
For each object that is written to a update
method is called. The Java application will
not know if the update was caused by a
PDO or a SDO.

Through the use of the CanOpenObjectDict-
ionary as a process image an abstraction
from the underlying technology is
achieved. In principle it would be possible
to replace the CANopen network by any
other network technology.

CANopen Manager

The I/O modules and the Process
Controller are simple CANopen slaves that
do not have information about the
complete network. The CANopen Man-
ager has all information about the network.
That means it knows which devices should

CIA405_STATE NodeState
CIA405_EMCY_ERROR EmergencyError

Table 1: Mapping of CiA405 data types to Java

CIA405_GET_STATE CanOpenObjectDictionary.getNode(id)
CIA405_LOCAL_NODE CanOpenObjectDictionary.localNode()
CIA405_RECV_EMCY CanOpenObjectDictionary.update(EmergencyError)

Table 2: Mapping of CiA405 function blocks to Java

iCC 2008 CAN in Automation

 03-4

be in the network and which shouldn't. It
also knows the configuration of each
device.
As such it has different tasks to fulfill:
• log CANopen events
• orderly startup of devices
• distribute configuration
• check configuration regularly

The CANopen Manager uses 3 of the 8
logging levels of the syslog daemon of
Linux. The level LOG_INFO is used for
events that have informational character
like configuration complete, heartbeat of
node started and all slaves booted.
Events that cause a logging entry with the

level LOG_WARNING are heartbeat of
node lost, an SDO access timed out or the
like. LOG_ERR is used for emergency
messages and unexpected internal
events.

The orderly startup of devices is described
thoroughly in the standard CiA 302-2.
Starting a device comprises several steps:
• validating the device type
• validating the device identity
• validating device configuration

When it is verified that the configuration
needs to be updated the CANopen
dictionary of the devices is filled with the

Figure 2: Type interface of the Process Controller

iCC 2008 CAN in Automation

03-5

values from the device configuration files
(DCF). The DCF of all devices is read at
startup and stored in object 1F22 in
concise format. This object is configured
as readonly to prohibit changes from a
configuration tool.

During the normal operation time the
configuration of each node is read out via
SDO and compared with the DCF value.
This happens to report unintentional
changes that may occur during a servicing
like replacing a device. In case that a real
value differs from the DCF value the
device is not reconfigured only a log
message is written via the syslog daemon.

Timing Considerations

The application process is under normal
conditions not very busy since nobody will
enter the inner bounds of the accelerator
when an experiment is run. Thus the bus
load is generated only by the continuous
SDO checks and the PDO timer events.

It is planned to provide I/O modules with
object 1020 Verify Configuration. With the
use of this object checking the
configuration of a single device can be
carried out with a single SDO access.
This change allows to modify the
continuous configuration check to a
interval configuration check and thus lower
the bus load further.

Configuration Management

As with the Process Controller and
CANopen Manager the configuration
management should be done with tools
work conforming to the CANopen
standard. CANopen devices come with an
EDS that describes the parameters of the
devices and thus the functionality of the
device. The format is described in CiA
306. The configuration that had to be
done was PDO linking, setting heartbeat
and parameterization of inputs and outputs
like inversion of the raw value. The result
is a set of device configuration files which
are used by the CANopen Manager.

It turned out that configuration tools can
handle small to medium sized EDS files.
The EDS file of the Process Controller had
large an EDS file with over 3 MB.
Configuration Tools from different
manufacturers were tested but processing
such a large file was not acceptable.
Either it took a long loading time and the
programme reacted slowly on user
actions. This problem was not totally
removed.

Figure 3: Configuration with a matrix

Another problem when creating a
configuration for such large networks is
that tools cannot provide the overview that
is needed. The data that should be
exchanged between modules is either
represented in a matrix (figure 3) or in a
point to point connection. In both cases
only a small cutout from the network is
available. This is a source of errors. The
problem can be tackled if the signals could
be exported from the signal plan.

Conclusion and future development

The personnel interlock was inspected by
the DESY radiation protection group D3
and approved to run for a year. Until now
it is running stable.

Future improvements for the process
controller are protection of the CANopen
object dictionary against configuration
changes when it is in Operational and
executing a callback before changing to
Operational. The CANopen Manager will
be enhanced with a service mode to reset

iCC 2008 CAN in Automation

 03-6

configured devices to the delivery state.
The configuration of the system was very
time consuming and thus is not optimal.
The suggested improvement: generating a
configuration based on a signal plan would
release the staff from this error-prone
work.

Rüdiger Härtel
port GmbH
Regensburger Straße 7b
06132 Halle
http://www.port.de
hae@port.de

Stefan May
DESY
Notkestrasse 85
22607 Hamburg
http://www.desy.de
stefan.may@desy.de

References
[1] CAN in Automation, Application Layer and

Communication, Profile CiA 301 (04 January
2006).

[2] CAN in Automation, Additional application
layer functions, Part 2 Network management
CiA 302-6 (08 August 2006).

[3] CAN in Automation, Electronic Data Sheet
Specification for CANopen CiA 306 (04
December 2002).

[4] CAN in Automation, Interface and Device
Profile for IEC 61131-3 Programmable
Devices CiA 405 (21 May 2002).

[5] port GmbH, CANopen, ANSI C library, User
Manual (22 February 2006). ISBN 3-8334-
4621-8.

[6] Addison-Wesley, Cay.S Horstmann and Gary
Cornell, Core Java 2 (2005). ISBN 3-8273-22-
16-2.

[7] Addison-Wesley, Sheng Liang, The Java
Native Interface,

[8] Programmer's Guide and Specification (June
1999). ISBN 0-201-32577-2.

