
iCC 2008 CAN in Automation

04-1

Plug and Play:
Node detection and node ID assignment with the

LSS (Layer Setting Services) Fastscan service

Olaf Pfeiffer, Embedded Systems Academy GmbH

This paper introduces the new LSS Fastscan method that implements a generic and
efficient scan cycle for non-configured devices. The LSS Fastscan was conceived for
the CiA Application Profile 447 “car add-on devices” to simplify plug-and-play in the
environment of taxis and other special vehicles. It was added to the CiA Document 305
“Layer Setting Services” and can thus be used by any CANopen implementation.
Furthermore, the method is generic enough to also be used in CAN based systems
using another higher-layer protocol.

Introduction and background

The automatic assignment of CANopen
Node IDs is a requirement for applications
requiring a high level of plug-and-play
support. There have been various solution
in the past, often optimized towards a
specific application and not easily
transferable to all applications. Software
solutions often require a long scan time, it
could take multiple minutes to complete a
detection and assignment cycle.
One of the existing solutions in CANopen
are Layer Setting Services (LSS) which
are used for basic node configuration such
as assigning a node ID and the CAN bit
rate used. As previously defined, LSS has
a few drawbacks like long and limited scan
cycles for detecting nodes. A typical
requirement was that the Vendor IDs of
the installed devices needed to be known.
Another drawback for microcontrollers with
limited performance is that the existing
LSS services use back-to-back messages
which cannot be received by CANopen
nodes with limited performance.
The LSS Fastscan service introduced by
the engineers of the Embedded Systems
Academy is an optimized variation of LSS
allowing more efficient and flexible scan
cycles. No back-to-back messages are
required, allowing the implementation to
be made also on embedded systems with
limited performance.

The existing LSS Scan Cycle, a brief
description

Each LSS Slave has a unique LSS ID, a
128bit combination of vendor ID, product
code, revision number and serial number.
A simplified scan for devices consists of
multiple messages by the LSS Master that
ask questions such as “Is there a node
present whose LSS ID is between X and
Y?” All LSS Slave nodes that match the
criteria send a single acknowledgement
response CAN message (no data). So as
long as the LSS Master receives this ACK
message it can continue with narrowing
down X and Y. If no acknowledge is
received within a timeout other ranges can
be tried. Using a binary search pattern the
Master can narrow X and Y until they are
the same and one unique device ID is
selected. The LSS Master then sends
further messages in the style of “You, you
with the LSS ID XYZ, take this new
configuration!”
The significant delay factors in this cycle
are the length of the LSS ID and the
timeouts used. With a long 128bit LSS ID
and multiple messages needed for each
request (testing for lower and upper
bound), the longer it will take for the LSS
Master to narrow down the values of X
and Y. Secondly the LSS Master needs to
know how long to wait for the ACK
message. The negative acknowledge
cannot be implemented by a message, it is
implemented by a timeout in the LSS
Master when not receiving the ACK

iCC 2008 CAN in Automation

 04-2

message. So with the timeout the LSS
Master knows that there are no nodes
present in the current range from X to Y
and has to try another range. The length of
this timeout significantly changes the
length of the scan cycle.
As the timeouts are not standardized and
are application specific true plug-and-play
was never achieved with the existing
mechanisms. Some applications using this
mechanism required multiple minutes to
complete an auto-detection and node ID
assignment cycle.

Requirements for CiA447, the car add-on
devices

When the interest group for car add-on
devices was founded one of the first
requirements was a reliable and efficient
way to automatically assign node IDs. The
scenario used as an example was that of a
taxi with a printer connected to the
CANopen network. At a taxi stand a typical
situation could be that one driver says to
the other: “My printer doesn’t work, may I
quickly try yours?” So a hot swap of
devices during operation needed to be
supported and a scan cycle of even a
minute would not be acceptable. For the
taxi drivers there needs to be an almost
instantaneous feedback if the newly
attached printer does or does not work.

Optimizing the scan cycle step by step

So far the LSS scan cycle was not really
standardized and not very efficient.
However, any add-on would need to be
backwards compatible and not interfere
with existing implementations. For the
Fastscan service a new command byte
was introduced. The command byte is the
first byte in the LSS Master message.
Existing implementations would simply
recognize that this new command is
unknown and ignore the message. This
ensures full backwards compatibility.
The next issue was that of multiple back-
to-back LSS Master messages. Any new
mechanism would need to use one
message only for each iteration step of the
scan cycle, allowing lower performance
devices to participate in the cycle.

Lastly, the mechanism would need to be
so simple, that even low performance
devices can achieve a short response time
allowing for short timeouts. A node that
has not yet a node ID assigned is still not
configured and in this mode typically has
not much other tasks to do, so even a
lower performance implementation should
be able to handle response times in the
area of single digit milliseconds.

Parameters of the LSS Fastscan Identify
Master message

The 8 bytes (0 to 7) of the LSS Master
Message are used as follows with the
Fastscan service:
Byte 0, command byte:
Set to 81h, identifies this as a Fastscan
Identify message
Bytes 1-4, IDNumber:
32bits that are currently checked versus
the Vendor ID, product code, revision
number or serial number.
Byte 5, BitChecked:
Defines how many of the bits in IDNumber
are currently checked. This is a value in
the range of 0 to 31. 31 means that only
bit 31 is checked, 30 means that bits 31
and 30 are checked, 29 means that bits
31, 30 and 29 are checked and so on. 0
means that all 32bits are checked.
A value of 80h is an exception and
indicates the start of a new scan cycle, all
nodes supporting Fastscan reset their
internal state machines and respond.
Byte 6, LSSSub:
Defines which part of the 128bit LSS ID is
currently checked in the 32bit IDNumber.
This is a value from 0 to 3 representing the
Vendor ID, product code, revision number
or serial number.
Byte 7, LSSNext:
Defines which part of the 128bit LSS ID
will be checked towards the 32bit
IDNumber in the next cycle. This is a value
from 0 to 3 standing for the Vendor ID,
product code, revision number or serial
number.

iCC 2008 CAN in Automation

04-3

The most simple best case: LSS ID known

If the LSS Master knows parts of the LSS
ID of the nodes on the network, it can
significantly shorten the scan cycle. The
most simple case would be if an entire
LSS ID is known. One can look at this
scenario to get a first impression on how
the Fastscan cycle works. The steps taken
and initiated by the LSS Master would be:
1. Start new Fastscan cycle
The first LSS Master message would use
a BitChecked value of 80h, indicating that
all participating nodes should reset their
internal state machines. All participating
LSS slave nodes send an acknowledge
message.
2. Verify Vendor ID
The LSS Master puts the known vendor ID
into IDNumber, sets BitChecked to 0 (all
32 bits checked), sets LSSSub to 0
(current check is Vendor ID) and LSSNext
to 1 (next check is product code).
Nodes that receive this message and have
a match of the Vendor ID set their internal
state machine to “I have a match, now
waiting for product code” and send the
acknowledge message. Nodes that do not
have a match of the Vendor ID go back to
waiting for the start of a new Fastscan
cycle.
3. Verify product code
The LSS Master puts the known product
code into IDNumber, sets BitChecked to 0
(all 32 bits checked), sets LSSSub to 1
(current check is product code) and
LSSNext to 2 (next check is revision
number).
Nodes that receive this message and have
a match of the product code set their
internal state machine to “I have a match,
now waiting for revision number” and send
the acknowledge message. Nodes that do
not have a match of the product code go
back to waiting for the start of a new
Fastscan cycle.
3. Verify revision number
The LSS Master uses the same method as
previously.
4. Verify serial number
The LSS Master uses the same method as
previously. Note that LSSNext is set to 4,
indicating that this is the last check.

The node that receives this message and
has a match of the serial number sets its
internal state machine to “I have a
complete 128bit LSS ID match, now going
directly into LSS configuration mode” and
sends the acknowledge message.
5. Node ID Assignment
The node can now be assigned a node ID
number using the existing LSS services.
These are all single LSS Master
messages (no back to back), so the entire
cycle was now completed without the
usage of back-to-back LSS master
messages.

The second most simple case: a single bit of
the LSS ID is unknown

To get a step by step understanding of the
LSS Fastscan service it is best to slowly
increase the complexity. After looking at
the most simplistic case of the entire LSS
ID being known to the LSS Master we now
increase the complexity by one bit: lets
assume the LSS Master does not know
the highest bit (31) of the serial number
(but knows all other bits of the LSS ID).
The LSS Fastscan cycle would now look a
little bit different. Steps 1 to 3 would be the
same as in the previous example and step
4 would now be:
4. Determine bit 0 of serial number
The LSS Master sets IDNumber to zero,
sets BitChecked to 31 (only bit 31 is
checked), sets LSSSub to 3 (current check
is serial number) and LSSNext to 3 (next
check will still be for serial number).
NOTE: At this point the LSS Master got
this far in the Fastscan cycle because it
previously received acknowledgement
messages. So there must be at least one
node on the network that has all previous
bits of the LSS ID (Vendor ID, product
code and revision number)
Case A: a node responds with an
acknowledge message because in its own
serial number bit 31 is set to zero. The
LSS master receives the acknowledge
message and knows that there is at least
one node which has bit 31 of the serial
number set to 0.
Case B: no node responds with an
acknowledge message and the LSS

iCC 2008 CAN in Automation

 04-4

Master internally generates a timeout. The
LSS Master now knows (as in previous
steps acknowledgement messages were
received) that there must be a node which
has bit 31 in the serial number set to 1.
In both cases the LSS Master can now
add the newly gained knowledge to the
existing knowledge about the LSS ID and
complete the Fastscan cycle as in the
previous example.

The worst case: LSS ID is entirely unknown
to the LSS Master

Once a system is in place to determine a
single unknown bit, this can easily be
expanded to all 128 bits of the LSS ID.
Using the BitChecked parameter the LSS
Master can determine unknown bits step
by step.

Optimization Options

The knowledge the LSS Master has about
the nodes connected has a direct
influence on the scan time. If mostly a few
selected Vendor IDs or product codes are
used in a system, then the LSS Master
can scan for these first, before initiating a
bit by bit cycle – so a scan for such nodes
will complete significantly faster.
A method used in CiA447 and generally
recommended is that the LSS Master
internally keeps a list of all nodes
previously found in non-volatile memory. A
system restart without any changes (same
nodes used as previously) then only
consists of best cases and each node can
typically be configured within 50 to 100
milliseconds.
Just adding/changing a single node then
only requires one complete bit by bit check
loop which typically completes in less then
a second.

Timing Analysis and Test Implementation

The timeout used is by the LSS Master to
determine if an acknowledge message
was received or not is the biggest factor
when it comes to the entire time needed to
complete a scan cycle.

Unfortunately the timeout is also directly
responsible for the level of plug-and-play
support. If the LSS Master uses a timeout
that is shorter than the response time of
the LSS Slaves, the Fastscan cycle will
fail.
As the LSS Master and Slave messages
used have a very low CAN priority the LSS
Master must be furthermore intelligent
enough to dynamically extend the timeout
in times of heavy CAN traffic load.
First implementations by Embedded
Systems Academy have shown that LSS
Fastscan Slaves based on embedded
microcontrollers can start transmitting their
responses to the LSS Fastscan Master in
less than 5 milliseconds. On an otherwise
idle network a LSS Master timeout of 7
milliseconds was used, resulting in a
complete 128bit identification of a single
node in less than a second.
The LSS Fastscan mechanism was
implemented into Embedded Systems
Academy MicroCANopen source code
which is available at no charge for
educational purposes.

Outlook

The LSS Fastscan service is currently in
the process of being integrated into
CiA305.
To ensure some level of guaranteed plug-
and-play service we suggest introducing
two classes of LSS Slaves, class I are
nodes that can start transmitting their
responses within 5 milliseconds of the
reception of the LSS Fastscan Master
message. Class II devices are those that
can start transmitting their responses
within 20 milliseconds of the reception of
the LSS Fastscan Master message.
The responsibility for selecting a timeout
value lies with the LSS Fastscan Master.
Preferably the Master always supports an
adaptive timeout that is automatically
extended in cases of high CAN
background traffic or in case of failures in
the scan cycle.
The LSS Fastscan mechanism can also
be used on other higher layer protocols.
All that is required for the implementation
is an unused CAN message identifier pair
for the LSS Master request and the LSS

iCC 2008 CAN in Automation

04-5

Slave response. Per default, these are
7E4hand 7E5h.

Pseudo Code for LSS Slave Responder

This section shows the pseudo code
executed with the reception of the LSS
Fastscan Master message. The

parameters IDNumber, BitChecked,
LSSSub and LSSNext need to be
extracted from that message.
Found: local boolean variable
Mask: local unsigned 32bit variable
MyState: global unsigned 8bit variable
LSS_ID[4]: const array with four 32bit
unsigned values containing 128bit LSS ID

 Found = 0

 IF BitChecked == 80

 { // Reset, re-init

 Found = 1

 MyState = 0

 }

 ELSE IF LSSSub == MyState

 { // Slave is in the state requested

 Mask = FFFFFFFFh << BitChecked

 IF (LSS_ID[LSSSub] & Mask) == (IDNumber & Mask)

 { // All bits requested match

 Found = 1;

 // Update own state as commanded by Master

 MyState = LSSNext

 IF BitChecked == 0

 { // all 32bit match

 IF LSSSub == 3

 { // Complete match, scan completed, NODE IDENTIFIED

 // Switch node to configuration mode now!

 PerformWhatIsNeededToSwitchToLSSConfigMode()

 } // end of LSSSub == 3

 } // end of BitChecked == 0

 } // end of bits match

 } // end of LSSSub == MyState

 IF Found == 1

 { // Send an acknowledge response as long as Found

 SendAcknowledgeMesaage()

 }

iCC 2008 CAN in Automation

 04-6

Trace recording of LSS Fastscan execution

CAN Msg Type Details Comment Raw Message (hex)
0x7E5 LSS Request LSSFS: Vendor ID - Ignore all bits find non confg nodes 81 00 00 00 00 80 00 00
0x7E4 LSS Response Identify start vendor ID 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 31 - 31 start vendor ID 81 00 00 00 00 1F 00 00
0x7E4 LSS Response Identify response: bit 31 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 30 - 31 81 00 00 00 00 1E 00 00
0x7E4 LSS Response Identify response: bit 30 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 29 - 31 81 00 00 00 00 1D 00 00
0x7E4 LSS Response Identify response: bit 29 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 28 - 31 81 00 00 00 00 1C 00 00
0x7E4 LSS Response Identify response: bit 28 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 27 - 31 81 00 00 00 00 1B 00 00
0x7E4 LSS Response Identify response: bit 27 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 26 - 31 81 00 00 00 00 1A 00 00
0x7E4 LSS Response Identify response: bit 26 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 25 - 31 81 00 00 00 00 19 00 00
0x7E4 LSS Response Identify response: bit 25 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 24 - 31 81 00 00 00 00 18 00 00
 no response: bit 24 is one
0x7E5 LSS Request LSSFS: Vendor ID - bits 23 - 31 81 00 00 00 01 17 00 00
0x7E4 LSS Response Identify response: bit 23 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 22 - 31 81 00 00 00 01 16 00 00
0x7E4 LSS Response Identify response: bit 22 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 21 - 31 81 00 00 00 01 15 00 00
 no response: bit 21 is one
0x7E5 LSS Request LSSFS: Vendor ID - bits 20 - 31 81 00 00 20 01 14 00 00
 no response: bit 20 is one
0x7E5 LSS Request LSSFS: Vendor ID - bits 19 - 31 81 00 00 30 01 13 00 00
0x7E4 LSS Response Identify response: bit 19 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 18 - 31 81 00 00 30 01 12 00 00
 no response: bit 18 is one
0x7E5 LSS Request LSSFS: Vendor ID - bits 17 - 31 81 00 00 34 01 11 00 00
0x7E4 LSS Response Identify response: bit 17 is zero 4F 00 00 00 00 00 00 00
0x7E5 LSS Request LSSFS: Vendor ID - bits 16 - 31 81 00 00 34 01 10 00 00
 no response: bit 16 is one

 continuation

0x7E5 LSS Request LSSFS: Vendor ID - bits 0 - 31 verify entire vendor ID 81 41 53 35 01 00 00 01
0x7E4 LSS Response Identify ID 0x01355341 confirmed 4F 00 00 00 00 00 00 00

 continuation

0x7E5 LSS Request LSSFS: Serial Number bits 0 - 31 serial number 0x00000000 81 00 00 00 00 00 03 04
0x7E4 LSS Response Identify 4F 00 00 00 00 00 00 00
0x7E5 LSS Request Configure Node ID - NID: 0x02 assign node ID 2 11 02 00 00 00 00 00 00
0x7E4 LSS Response Configure Node ID - Success 11 00 00 00 00 00 00 00
0x7E5 LSS Request Store Configuration 17 00 00 00 00 00 00 00
0x7E4 LSS Response Store Configuration - Success 17 00 00 00 00 00 00 00
0x7E5 LSS Request Switch Mode Global - Operation start node 04 00 00 00 00 00 00 00
0x702 Bootup node 2 boots up 0

The trace recording above is a summary
of a LSS Fastscan execution. The
columns show the CAN message identifier
seen on the network, the message

interpretation with type and details, a
comment and the raw message contents.

iCC 2008 CAN in Automation

04-7

Olaf Pfeiffer
Embedded Systems Academy GmbH
Bahnhofstr. 17
D-30890 Barsinghausen
opfeiffer@esacademy.com
www.esacademy.com

References
[1] CiA DS 301, CANopen application layer and

communication profile
[2] CiA WD 447, Car add-on devices
[3] CiA WD 305, Layer Setting Services (LSS)

and protocols
[4] MicroCANopen source code,

www.microcanopen.com

