
iCC 2012 CAN in Automation

07-8

A large scale CAN bus system.
By John Dammeyer

Automation Artisans Inc. Victoria, BC. Canada

This paper describes the design, manufacturing and installation of a CAN bus Lamp control
system that eventually consisted of 765 nodes running a customized protocol updating nodes at
24Hz. A second network, with 6 nodes running the CANopen protocol, was used for
diagnostics and bus configuration. Each LED Lamp node has a single processor that controls 36
Red, Green, Blue and White LEDs. The application software, written in Delphi and running on
a PC sends messages via USB to a control computer containing 5 CAN bus channels. The 5
CAN bus channels were further broken into 3 sets of 50 nodes using a CAN Bridge.
Additionally, with a USB to CAN controller the CAN open link into the Bridges was used to
monitor the status of each of the 15 groups of 50 CAN nodes.What made this project unique was
the time frame from concept to the design, construction and installation of this one of a kind
product. Some of the problems, included rainy weather, component and cable failures are
discussed.

The Project and the time line:
The project proposed was to create a set
of LED Lighted 10m diameter Olympic
Rings that would be mounted on the Lions
Gate Bridge in Vancouver, BC, Canada.

Photo 1 -- Simulation of Rings on Bridge “Lions
Gate With Rings.jpg”

Power consumption was to be as low as
possible while the coloured LEDs should
still be visible from several kilometres
away. The client also wanted colourful
active light shows rather than a static set
of white rings.

These rings were to be unveiled on
February 5th, 2009, 1 year before the
opening of the
2010 Winter Olympic Games. The first
contact with the client was December 1st,
2008 where

we were told the target installation date for
the rings was the 20th of January, 2009.
With Christmas and New Years in-
between we had less than 8 weeks to
deliver a working display.

By the 3rd of December, 2008 we had
determined that other than wrapping the
rings in metres and metres of COTS LED
Christmas lights, the availability of any
sort of commercial RGB (Red, Green,
Blue) LED light assemblies was in the
order to 8 to 12 weeks. We therefore had
to build our own LED Lamps.

The Network:
Well documented and used everywhere
for light shows is the ESTA DMX-512A
specification for communication with
theatre and decorative lighting. Running
an RS485 bus at 250k bits per second
with 512 slots for lamp intensity values, at
first glance, it appeared to be the easiest
solution. However DMX -512A is
unidirectional.
We felt that since the venue was a bridge,
service and access to the lights for
potential firmware upgrades and status
was considered critical. Therefore CAN
bus seemed the logical choice.

iCC 2012 CAN in Automation

07-9

I used Airy disk calculations to determine
that from the unveiling view point we
would need only 100 lights per ring to
create the illusion of a contiguous circle.
To reduce power consumption and
prevent the rainbow effect of mixing Red,
Green and Blue when displaying a white
ring we decided to add White LEDs to the
lamp fixtures.

CAN Devices have a 120 node bus drive
capability and because the automotive
market is full of CAN products there was
no shortage of CAN based
microprocessors. Eventually I found a
Freescale 9S12 processor with 5 CAN
channels. I ordered an Evaluation board
from Italy.

Designing the Lights:
The first step was to fabricate a prototype
LED panel with clusters of RGBW LEDs,
resistors and a battery determine how
many were needed and what sort of
power consumption, intensity we could
generate. I used a PIC18F CPU board
from a different project and after a quick
search on the Internet found an LED
controller. The next day with the prototype
parts on hand I built the first LED driver
using narrow angle LEDs to get maximum
on-axis penetration on foggy evenings.

Packaging and interfacing is the most
difficult part of any product development.
We decided to use an existing plastic
Lamp Base with an O-ring sealed clear
plastic lens. Experiments with a clear cap
or a fresnel lens showed that the clear one
created less prismatic diffraction.

After the initial experiments I settled on a
panel of 36 LEDs in a 3x3 matrix, wired in
groups of three LEDs per colour for a total
of 12 channels. Control of intensity was
through a TI LED driver and IIC bus.
Access to the driver registers was also
made available through a set of CAN
messages so we could remotely check or
modify the driver.

Ideally this sort of product would have one
PC board that held LEDs, Processor
Driver and voltage regulator. Due to parts
availability and that we were using through
hole LEDs we decided to break it into a

CPU board and an LED board. This way
assembly of the LED panels could start
right away while the Surface Mount
Technology CPU boards could be done
very quickly later on. The LED panel
prototypes were ordered and tested. Then
a production order was placed and work
was started on the software.

Meanwhile I designed the CPU board to
use a mix of a switching regulator and a
linear 5V regulator. With the arrival of the
first 5 prototype CPU boards I assembled
5 lamps and was finally able to do some
power consumption testing. With all LEDs
turned on and polling CAN bus activity the
power consumption averaged just over 4W
at 24VDC which was what we expected.
The panel of 5 was later used to test the
PC show software.

Photo 2 – Lamp Test Assembly “TestBoard.jpg”
Connecting the lamps together became
the next issue since we needed to provide
power and network to 5 separate CAN
systems.

Connecting the Lights:
By now the mechanical engineers had
designed the structure to hold the lights
and the electrical engineering department
had drawn plans for the AC power and
cabinetry. Placement was critical since we
wanted to run the CAN bus at the full
speed of 1Mbps. I could get away with
35m of cable at that bit rate.

We measured from the cabinet position to
the last lamp and we were easily within the
maximum distance based on driving each
network from the centre out in both
directions. This approach would put the
9S12 master node in the centre of the
network with two

iCC 2012 CAN in Automation

07-10

lengths out to the structure with 50 lamps
on each end. Using this approach meant
that current draw in each segment was
half of the total for each network bus.
Total bus length was also under 35m.

Again, after an extensive market search
for CAN bus cables it became clear that
the only cost effective solution (within
budget) would be to purchase thick and
thin DeviceNet cable designed specifically
for CAN bus signals and we would have to
build our own harnesses. Four pin female
AMP CPC connectors were chosen to be
on the thin cable stubs and we decided to
connect the stubs to the thick cable using
insulation displacement connectors.

The thick DeviceNet cable was slit, the
shield spread apart and the wires made
accessible. Although the displacement
connectors were rated for our wire gauge
the thickness of the insulation around the
white and blue data wires made the
connections difficult. Heat shrinkable
boots were slid over the entire assembly
and heat was applied to shrink the boots.

It wasn’t until we started testing cables
that we discovered that the technicians
had been rather aggressive with the heat
guns. A post mortem on a shorted cable
showed the plastic around the
displacement connectors completely
melted along with the wire insulation. The
shifting of the metal clips and wire fused
the wires together into a solid mass and
there were a lot of these.

The decision was made to strip insulation
and solder the connections instead. That
created it’s own share of problems as
quality control started to suffer with badly
sealed connectors and unsoldered wires.

Photo 3 – Wire not Soldered
“BadConnection.jpg”
By now more than a month had elapsed.
A TDR was used to try and find the cable
shorts and we were running out of time.

Power Supplies:
Cost was also a consideration when it
came to choosing network power. We
needed at least 425W per network but the
thick cable restricted us to 7A which meant
at a minimum the supply had to provide
14A at 32V. Ideally a 500W 36V supply
would give us some headroom and keep
us below the 42V maximum switching
regulator input voltage and the bus voltage
specification for the CAN bus driver.
However, once again the deadline
prevented acquiring anything in time and
within budget.

The quick solution was to use a 24VAC
21A transformer along with a bridge
rectifier and condenser. Unloaded the
voltage sat at 38VDC and fully loaded it
dropped to just under 30V. The electrical
engineers also used a power line network
analysis program to determine the voltage
at the last lamp when all lamps were on
drawing maximum current.. Too big a
voltage drop and the common mode
voltage between CAN signals and ground
from the centre point driven end and the
last node of the network would be
exceeded.

To summarize the process for determining
the power supply:

1. Node power consumption 4.05W
2. Number of nodes on bus section

50.
3. Cable maximum current rating 7A
4. Maximum switching power supply

voltage on node 42V

iCC 2012 CAN in Automation

07-11

5. Maximum voltage on CAN bus pins
+/- 36V

6. Cable Length (17.5m) and
resistance used to determine
voltage drop along cable for
common mode (-7V to +12V)
calculations.

Control System:
Figure 1 now shows how the system was
to be organized. From the PC for
running light shows, through a USB
connection to a 9S12 based evaluation
board to 5 CAN bus channels. Each
channel would drive a network of 100
devices from a centre point of a 35m long
network thus distributing only half the
power along each half of the network.

Figure 1 - Lions Gate Bridge Configuration
“OrganizationLGB.jpg”

Before the 9S12 boards arrived I had
already prototyped a small PIC based
processor to act as a central controller. It
had only one CAN port and sufficient
memory for a 7 light data structure but it
served as a test bench for the USB to
Serial interface to the PC. This PIC
became test module for polling and
updating the nodes with lamp intensity
information.

On the PC I wrote a test application that
allowed me to examine registers and
status information in any node; to even
request the serial number from a node and
to change the node ID using the serial #
as a key.

From the start of the project we realized
that replacing a lamp on the Bridge was
difficult. We could easily have a node ID
mix-up and so being able to change a
node ID remotely, even if it currently had
the same node # as another

lamp on the network, was a fundamental
requirement.

Screen 1 - Ringlight Control
“RingLightControl0.02.jpg”

At this point I had a working PC
application, controller software written in
C for a PIC18F series processor and lamp
software for the lamp PIC18F processors.
I could turn on and off the RGBW lamps
and adjust overall intensity and I could
request status, including lamp
temperature, from each lamp. I handed off
the test application to a colleague who
would use it as a template to write the
show software to animate the lamps.

By now the 9S12 evaluation boards had
arrived and I started porting the PIC18F
controller template over to the 9S12. We
settled on the Cine Camera frame rate of
24Hz for refreshing the lamps. This meant
every 41.67mS we could conceivably
supply a new set of lamp colours and
intensities. If polling stopped for some
reason, or the lamps lost communications
they reverted to a default colour and
intensity.

The Customized CAN Protocol:
The network now consisted of 101 nodes
including the master and was meant to run
at 1Mbps using 11 bit Identifiers. On
average a message would be present on
the bus for about 120uS but we wanted to
design for worst case scenarios of
500kbps and 29 bit identifiers which meant
an average of 135 bits or 270uS per
message for a total time of 27mS. This
fit into the polling window of 41.67mS.

To simplify things further we decided to
pack the RGBWI information for two lamps
into one 8 byte packet. Each intensity

iCC 2012 CAN in Automation

07-12

value would now be only 64 levels with a
group intensity
value of 8 bits. That’s still 64x64x64
colours (262 thousand) each with 255
different intensities not including the white
LEDs.

With the packed data we now had to
transmit only 50 packets per channel
every 42mS. That left lots of time for
servicing the controller serial port. After
each polling burst of 50 messages a
request was sent out to a single lamp for
status information. The lamp would
respond, the 9S12 would then format that
into an ASCI text message to send up to
the PC.

The 9S12 evaluation board had a
breadboard area that I populated with an
FTDI USB245. This USB device could
emulate a serial port from the PC side but
had a byte parallel interface on the 9S12
side resulting in much faster transfers.

Using an ASCII protocol, we could debug
with a serial terminal emulation program.
Inside the 9S12 the messages were
decoded into a 5x100 element data
structure that was then packed into a CAN
messages becoming even plus odd Lamp
information and sent out every 41.67mS.

Venue Change:
Recall that Airy disk calculations show that
a point of light expands and become larger
as you move further away from the light.
Correspondingly physical objects appear
smaller as you move further away. Based
on a progress report 4 weeks into the
project, the client realized that the ring and
lights structure would be roughly the size
of a Canadian Penny held at arms length
when the bridge was viewed from the
unveiling location.

The entire project was placed on hold for
over a week while alternatives were
considered. It was now the middle of the
first week in January and more than 5
weeks from the start of the project. We
were ready to assemble 550 lamp panels.
We had 550 CPU boards ready to
assemble and final assembly of the

enclosures had begun. About half the
cables had been fabricated and tested.

The Vancouver Airport Authority (YVR)
came to the rescue and offered up an
ideal site for the rings and a location for
the unveiling of the lamps. The problem
was that this new location was now too
close with only 100 lights per ring. They
would no longer be rings but instead be
circles of individual lights. The only
solution was to add more lights placing
them closer together. Calculations
showed that we could just do it with 150
lights but that exceeded the drive
capabilities of the CAN dri vers which were
limited to 120 nodes.

After an extensive Internet search and
help from members of the CAN List I found
CAN bridges based on the same 9S12
processor we were using for the controller.
Along with the ability to bridge between 4
CAN bus channels it also had a CANopen
configuration and monitoring port. The
supplier even ran our polling software on
their evaluation board to insure their
bridge would not lose any messages.
Now it was possible to drive 150 CAN
based lamps with 50 per segment. And
each segment was less than 35m long
although several came very close.

Figure 2 - YVR Rings with Bridges
“OrganizationYVR.jpg”

The configuration became PC to USB to
9S12 controller to one of 5 CAN ports to a
CAN Bridge to 3 CAN segments. Each
segment still used half the current as
specified in the original project. An added
benefit was that the mechanical structures
were built in sections for transport. It
turned out each section held multiples of
50 lights so now a bridged ring segment
could be identified discretely as for
example Ring 3A or Ring 4C.

iCC 2012 CAN in Automation

07-13

As luck would have it the transformers we
had ordered were large enough to handle
the 150 lamps. However, we now had to
order an extra 250 LED panels and CPU
boards plus parts along with 250 more
enclosures and connectors and the labour
to assemble
everything. We were given a one month
extension. it was now the middle of
January and the lights had to be on site by
the 27th of February for installation onto
the mechanical structure.

We would have two days to test the
assembly while it was flat on the ground
before it would be disassembled and
moved to the airport. We would then have
a few days to wire up the cables into the
control box and test the system.

The Final Days:
The first on site days were spent wiring
and adding connectors to the thick
DeviceNet cable. Light wet snow falling
with temperatures hovering around
freezing made crimping the connectors
difficult. Cable problems with short and
open circuits and two lights responding to
every single light message were just some
of the problems. The most serious was
finding 12VDC on the CAN bus. This
turned out to be CAN bus wires inside the
lamp touching sharp pins on the LED
board.

Photo 4 - Horizontal Rings - First Test
“TestingRingsFlat.jpg”
With initial testing complete the rings were
disassembled and taken to the airport site.
Now the cables were cut to length and the
pins crimped on and the segments tested.

However, many of the lamps were
installed in the wrong locations and
therefore their ID numbers were not
consecutive. That and several cables
again had the power rail or ground shorted
to the CAN bus wires. Some lamps again
were bridging the internal 12V to the CAN
bus.

Guy wires that held the structure stable
prevented easy access to many of the
nodes but working methodically we found
the short circuits, defective lamps or
connections and just before midnight the
day before the unveiling the system was
almost operational. Only a few lamps still
needed their nodes set to the correct
value.

Photo 5 - YVR Airport Rings “YVR_Rings.jpg”
Using my ring light program I entered in ID
#78 and tapped the set node button. And
with that press of a button I instantly set 50
nodes to have the same node ID #78. It
was now past midnight. Fortunately the
other two segments in that ring were
powered down or there would have been
148 lights with the same #78 node ID.

Originally, when we tested the lights and
assigned initial locations we had recorded
the serial # and the ID # of every lamp. To
solve the problem we shut down power to
all but the one segment. .For every node
on the segment we had 5 possible serial
numbers. An hour later we’d found each
serial number and assigned the correct
Node ID to the lamp with the matching
serial number. The unveiling show went
off without problems.

iCC 2012 CAN in Automation

07-14

Screen 2 - ORingEdit Control Software
“ORingEdit.jpg”

Operating for a year:
We ran into a number of issues over the
next six months. Cable failures continued
to cause segments to generate massive
numbers of bus errors. I had neglected to
consider the length of the bus inside the
cabinet and two of the ring sets were so
close to the network length maximum that
we had multiple errors when the lights
were cycling between off and full intensity;
due to a combination of ground bounce
and cable length.

Screen 3 - Node Temperature Display
“temperatures.jpg”

 Outside temperature variations would
change a working segment into a failing
segment due to expansion and contraction
of the cable. On a record day in July the
temperature inside some of the lamps
reached 60C.

When we ordered the 5 bridges only 4
new ones were available.
To help us out the supplier graciously sent
us their lab unit that had been subjected to
EMI testing. Eventually we had to replace
that unit as one of the three channels
continuously produced errors.

The defective cables removed from the
network generally had poor connections
due to water damage. The defective
lamps were always dead because of water
ingress. One lamp had over 250ml of
water and the level was high enough that
the 36V supply caused the connectors and
circuit board traces to be eaten away.

We finally made the decision to change
the bit rate of the ring segments with the
longest cables to 500kbps. We had to
remove and reprogram the lights to do
this. There were now some rings with dual
speed CAN bus segments. Using the
CANopen link into the bridges we modified
the bridges to receive 500Kbps from the
9S12 and send either 1Mbps or 500kbps
messages out to the ring segments.

Upgrading to Dual Rings:
Initially the dual rings were to be on land
and would use the same hardware. We’d
use two 9S12 evaluation boards, two USB
ports and upgrade the software to deal
with the two sides of the structure.
However, a series of complications turned
this project into another last minute race
against the clock with specifications and
changes occurring during development.

The passing of our Windows programmer
due to complications from Cancer, lack of
supply of the 9S12 evaluation boards and
the need to run from a 48V battery system
all caused unexpected problems.

The new lamp processor boards had two
switching power supplies, one to convert
the 48V to 60V battery rail voltage down to
12.6V and a second identical device to
convert the 12.6V down to the logic 5V.
When the prototypes arrived one was
assembled, the code tested and
production quantities ordered all in the
same day.

To replace the no longer available 9S12
evaluation board and add relay control for
power cycling I designed a small DIN rail
9S12 board with 6 relay drivers. We
stayed with CAN Bridges and CANopen
for diagnostics.

iCC 2012 CAN in Automation

07-15

Photo 6 - New USB to 9S12 to 5x CAN
“Assembled9S12-1.JPG”
This time the manufacture of the cables
was contracted out to a firm with plastic
over-moulding capabilities.
Even so, a shorted cable put 48V onto the
CAN bus and instantly damaged 50 CAN
drivers when power was applied. The
drivers were rated for a much lower
maximum voltage on the bus lines.

The end of the expensive supply cable
was left as a coil on the metal deck before
entering the distribution cabinet and This
cable, carrying the 48V, 70A supply
created an inductive induced over voltage
spike that damaged over 300 lights when
they went from fully on to fully off.
Shortening the cable so it lay straight and
flat along the metal hull of the barge
removed the high voltage spikes.

Access to the system PC was via Remote
Desktop and email. Our new windows
programmer added email support so that
we could send emails with a specially
formatted subject and content to play a
specific show.

Each day, at Midnight, the ring lamps were
set to a colour of the day. The lamps
would stay at that colour until one of the
Canadian Athletes won a medal. The
Project Leader [2] or I would then send an
email representing the colour of the medal
to a gmail.com email address. The
Control PC checked for email once per
minute and if it received a correctly
formatted email it would run the show and
leave the LEDs set to the colour of the
medal won by the Athlete.

Photo 7 -- Double Rings in Coal Harbour [3]
“Barge1a.jpg”

[1] Steve Corrigan: Message priority
inversion on a CAN bus
http://www.ti.com/lit/an/slyt325/slyt325.pdf

[2] Eddy Butler: EB Engineering Ltd.
Sidney, BC. Canada

[3] Dave Nunuk – Photographer

John Dammeyer
Automation Artisans, Inc.
2335, Tanner Rd.
CA-Victoria BC V8Z 5P8
Phone: +1-250-544-4950
johnd@autoartisans.com
www.autoartisans.com

