
iCC 2012 CAN in Automation

06-11

A New Method and Format for Describing CANopen
System Topology

Matti Helminen, Jaakko Salonen, Heikki Saha*, Ossi Nykänen, Kari T. Koskinen, Pekka Ranta, Seppo
Pohjolainen, Tampere University of Technology, *Sandvik Mining and Construction

In this article, we present a new method for describing CANopen network topology. A
new format using GraphML, an XML-based graph format, is introduced. By using a
subset of GraphML along with CANopen-specific new elements and attributes,
topology of single as well as multiple CANopen networks can be captured in a well
established graph format with existing tool support. The new format is specified in a
manner that allows CANopen design applications to adopt it while providing a
mechanism for fallback in unsupported software. Methods for extending the format to
contain other CAN- and CANopen-specific data as well as transforming the GraphML-
based network structure to other formats are described. Finally, the implications of
the introduced method and format are discussed.

1. Introduction and Background

When designing mobile machines in
practice, multiple CANopen networks may
need to be used. What may then become
problematic is that the current CANopen
design programs and specification support
only description of individual CANopen
networks. Specificially, formats and
applications for specifying topology
between and within networks.
From stricly practical point of view, this
may not be problematic. If one wishes,
however, to re-use information from
CANopen designs, becomes integration of
topology information with other CANopen
data cumbersome: we not only need to
know in which format the topology
information is encoded in, but also need to
create adapters that (programmatically)
combine topology information with other
CANopen data. In addition, well-defined
points for schema extensions are missing.
Our motivation for enriching CANopen
designs with network topology information
stems from Semogen project. In Semogen
research project, we have attempt to
(semi-)automatically generate virtual
prototypes, i.e. virtual machine
laboratories (VMLs), directly from design
data [11, 12, 13, 14]. Within a VML, it is
useful to represent CANopen network in
visual, graph-like format, where nodes are
represented as graph nodes and

connection between the nodes as edges in
a graph. However since the specific
structure within and between nodes is not
defined in actual design data, some
structure needs to be generated for the
purposes of visualization. This is
problematic since the visualized structure
may or may not correspond to the actual
structure of the network. For accurately
representing CANopen network structures,
we would require to have network
topologies defined in design materials, in
some common format.
In a more broader level, an important use
case for network topology information re-
use is CANopen network monitoring and
troubleshooting. By enriching for instance
onboard device monitors with this
structural information, more informative
system monitoring tools can be
implemented.
From the current formats, the most
promising candidate for a point of
enrichment is nodelist.cpj. As defined by
CiA-306-3 [7], nodelist.cpj has the main
purpose of providing either network or
system level structural information and link
to appropriate DCF- [16] or XDC-files[17].
What is limiting is that the current format
only allows description of individual
CANopen networks. DCF-files can be
linked to nodes and further to the network,
but only locally within a given network. The
format also doesn't enable us to describe

iCC 2012 CAN in Automation

06-12

in which order nodes are physically
connected.
A current effort towards enriching
CANopen designs with topology
information exist. CiA-302-7 Draft specifies
signal routing in gateway nodes, enabling
us to track signals between multiple
CANopen networks [10]. However, even
with CiA-302-7 we still do not have
information about topology of the
underlying CANopen networks; the way in
which the nodes are connected within
specific CANopen networks still remain
unspecified.

2. Nodelist representation with GraphML

In this chapter we introduce GraphML and
define a GraphML-based format for
representing nodelists with topology
information.This Nodelist.graphml
format[9] has also been proposed to
CiA.The proposal will add to the future
CiA-311 system structure information,
which has been integral part of the CiA-
306 defining the old design files.

2.1. GraphML

GraphML (Graph Markup Language) is an
XML (eXtensible Markup Language)
format for graph structures and has a
mechanism that allows to define extension
modules for additional data [2]. GraphML
is well suited for data interchange,
because its extension modules allow
application specific-data to be added that
can be combined or stripped without
affecting the graph structure. [1, p.1] This
way additional data can be ignored by
programs not supporting it without
affecting the graph data itself.
GraphML was designed with simplicity,
generality, extensibility and robustness in
mind. Because of this, the format is easy
to parse and interpret and has no
limitations with respect to the graph model.
GraphML-based formats can be extended
with well-defined way to represent
additional data and application not capable
of supporting this added data can ignore it
or extract the subset they can handle [1,
p.3].
Format in GraphML is based on XML [2]
so there are readily available parsers and
tools for it. Also XML enables us to use

additional features like Namespaces [3] or
XLink [4] inside a GraphML document. In
this way, a format can be extended with
features required by custom applications.
Structural layer of GraphML describes the
fundamental graph model, which is mixed
multigraph and may, but is not required to,
include nodes, ports, edges, hyperedges
and nested graphs [1, p-4]. In figure 2.1.1.
we have simple GraphML example file. It
has one graph, but GraphML-format may
also include multiple graph elements.
Graph-element has mandatory attribute
edgedefault, which specifies whether
edges are directed or undirected by
default. Graphs may contain any number
of nodes, edges and hyperedges in any
order. In the example we have four nodes
and three edges, but no ports or
hyperedges.

<?xml version="1.0" encoding="UTF-8"?>

<graphml
xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
"http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xs
d">

 <!-- System description graph (single network) -->
 <graph id="RootNetwork" edgedefault="undirected">
 <node id="Device_A"/>
 <node id="Device_B"/>
 <node id="Device_C"/>
 <node id="Device_D"/>

 <!-- Network connections -->
 <edge source="Device_D" target="Device_A"/>
 <edge source="Device_D" target="Device_B"/>
 <edge source="Device_D" target="Device_C"/>
 </graph>
</graphml>

Figure 2.1.1. Simple GraphML example file,
which includes graph, nodes and edges.

Port is part of a node to which edges may
attach. Ports appear as nested
subelements of node. Ports may also
include other ports.
Edges connect ports or nodes together.
Edge has source and target node,
regardless of whether it is directed or not.
Edges may also have sourceport and
targetport if it is used to connect ports.
Edges optional attribute directed can
overwrite graphs edgedefault value for
current edge.
Hyperedge is a special case of an edge

iCC 2012 CAN in Automation

06-13

which can have multiple endpoints. Each
endpoints' direction can be defined as in,
out or neither. Endpoints refer to nodes
and may also refer to ports.

2.2 GraphML extensions

Extensions provide a method for defining
additional data and can also provide typing
information for it. This additional data in
GraphML is defined with the help of key
and data elements [1, p8]. A key element
is used for typing and naming the data and
the data element is for containing actual
data value. Every data element has to be
linked to ca orresponding key element with
id attributes in key and data elements.
Multiple data elements should refer to a
common key element's id, if they all
contain same type of data.
So data typing is done in key element.
These elements can be defined in the
beginning of a GraphML file. In figure 2.3.2
we see an example of key element
definitions in use. Key element has id
attribute, which has to be unique and is
used to link data element to this key
element. Further, for attribute defines what
elements (graph, node, edge, port, etc.)
can contain this type of data. Purpose of
the attr.name attribute is to identify the
meaning of the key attribute and it has to
be unique, but it is not used inside the
document to refer to key attribute [8]. The
attr.type attribute defines the type of the
data and can be either boolean, int, long,
float, double or string. These types are
defined like corresponding types in the
Java programming language [8].
Data values are defined in a data element,
which is located inside graph, node, edge
or some other element defined in a key
element's for attribute. In our example a
data element is located inside graph
element as seen in figure 2.3.3. A data
element's key attribute refers to key
element's id attribute, so we can have
typing of our information. The actual value
for the data is defined as content of the
element. In this case we have property
background, which has value of
lin_back.bmp as illustrated by figure 2.3.3.
Additionally we can see that in
corresponding key element (in figure
2.3.2) the background property can be

defined for graphs and has to be in string
format.

2.3. Nodelist.graphml format

The existing format, nodelist.cpj (figure
2.3.1), represents only nodes within one
CANopen network and contains no
topology information. The format only
allows listing the existing nodes, their
DCF-files [16] and names. Yet, having
topology information and an overview to
the whole CANopen system would be
useful for maintenance and
troubleshooting and can be used for
creating different views of the network or
create semantic models of it. Therefore we
specified new format, Nodelist.graphml [9],
which has also been proposed to CiA as a
draft.

[Topology]
EDSBaseName=EDS #optional
NetName=DefaultNet #optional
Nodes=0x02
Node2Present=0x01
Node2DCFName=demo_plc.dcf
Node2Name=DemoNode_A #optional
Node3Present=0x01
Node3DCFName=demodeva.dcf
Node3Name=DemoNode_B #optional

Figure 2.3.1. Two node network description in
nodelist.cpj format.

GraphML provided existing solution for
describing graphs in XML based format. It
was designed as a data interchange
format for graphs and associated data. It
also allows defining of extension modules
for additional data, in this case node and
network information. This additional data
does not affect the basic structure of
GraphML and information can be added in
well-defined way. Even with additional
information, GraphML format is still
readable and editable in programs that
support it. They can present the graph
information and leave additional data
unchanged. Additional information is
decribed with <key> and <data> tags.
We chose one graph to represent whole
CANopen system with multiple CANopen
networks. Another solution was
considered, where one graph would
represent only one CANopen network. In
this solution a node would present one
CAN node and therefore if one physical

iCC 2012 CAN in Automation

06-14

CAN device is connected in multiple CAN
networks, it would have had separate
nodes in every network's graph.This
solution was abandoned due to complexity
and the lack of support for multigraphs in
GraphML tools. In one graph per whole
system solution, one node would also
represent one physical CANopen
device.This creates the need for having to
redefine per network attributes in
associated each nodes.
Because the defined GraphML format
presents a whole CANopen system and all
networks in it, we can attach common
attributes to it. To this date, we have
defined two attributes [9] at the beginning
of a Nodelist file (see figure 2.3.2) These
attributes are attached to graph element
which presents the whole system (see
figure 2.3.3.). EDSBaseName decribes the
path to directory which contains EDS
files[16]. Background attribute is optional
and can be used for background image for
visualization purposes (for details, see
section 3.2 and figure 3.2.2).

<!-- Attribute definitions for element <graph> --><key
id="EDSBaseName" for="graph"
attr.name="EDSBaseName" attr.type="string" />
<key id="Background" for="graph"
attr.name="Background" attr.type="string" />

Figure 2.3.2. Global parameters defined to
graphs.
<graph id="RootNetwork" edgedefault="undirected">
<data key="EdsBaseName">EDS</data>
 <data key="Background">lin_back.bmp</data>
 <!-- nodes and edges are defined here -->
</graph>

Figure 2.3.3. Setting values to global
parameters in graph-element.
<node id="N003"> <data
key="NodeName">DemoNode_C</data>
 <data key="NodeType">device</data>
 <data key="NodeFig">testnode.bmp</data>
 <data key="X">220</data>
 <data key="Y">20</data>
 <data key="NumOfNets">1</data>
 <!-- ... -->
</node>

Figure 2.3.4. Device specific parameters
defined to nodes.
<edge id="E002" source="N001" target="N003">

 <data key="NetNumber">7</data>
 <data key="CableName">W5002</data>
 <data key="Length">500</data>
 <data key="LineType">line</data>
 <data key="LineParams"></data>
</edge>

Figure 2.3.5. Connection specific parameters
defined to edges.
<node id="N003">

 <!-- ... -->
 <data key="NetNumberN1">1</data>
 <data key="NetworkNameN1">DefaultNet</data>
 <data key="NodeIDN1">4</data>
 <data key="NodeDCFNameN1">demodevb.dcf</data>
 <data key="SupplyDomainN1">Primary</data>
 <data key="SupplyPointN1">0</data>

 <data key="NetNumberN2">7</data>
 <data key="NetworkNameN2">AdditionalNet</data>
 <data key="NodeIDN2">6</data>
 <data
key="NodeDCFNameN2">demodevb2.dcf</data>
 <data key="SupplyDomainN2">Primary</data>
 <data key="SupplyPointN2">0</data>
</node>

Figure 2.3.6. Network specific parameters
defined to nodes.

2.4 Discussions

Hyperedges were considered as a way to
describe connections between different
CANopen networks. The idea was that
one hyperedge would join same physical
CAN device in different CANopen
networks. But the lack of support for
hyperedges in GraphML editing tools and
added complexity got the idea abandoned.
Instead, multiple key values like
NetNumberNx were defined for nodes with
multiple network connections (as in figure
2.3.6) where x describes network number.
Another alternative solution was to use
ports as per network connection in nodes.
Ports are defined inside the node. This
idea has few advantages over using
NetNumberNx style definition. Firstly,
network-specific parameters can be
defined in port so there is no need for
multiple definitions of a same parameter.
For nodes that have multiple different
network connections, multiple ports can be
used. One for each different network.
This way a schema would be constant for
all nodelist.grapml files with any number of
networks. Also for example NodeID is
always found in NodeID named parameter
and not NodeIDNx parameter where x can
be anything. Validation of this type of

iCC 2012 CAN in Automation

06-15

format is much easier and filtering or
visualizating the network according to
parameter specific properties is also much
less complicated. Two network example of
using port for per-network parameters is
presented in figure 2.4.1.
This idea although it was simpler as a
format was abandoned due to the lack of
port support in GraphML tools and
libraries.
<!-- ... -->

<port id="P01">
 <data key="NetNumber">1</data>
 <data key="NetworkName">DefaultNet</data>
 <data key="NodeID">4</data>
 <data key="NodeDCFName">demodevb.dcf</data>
 <data key="SupplyDomain">Primary</data>
 <data key="SupplyPoint">0</data>
</port>
<port id="P02">
 <data key="NetNumber">7</data>
 <data key="NetworkName">AdditionalNet</data>
 <data key="NodeID">6</data>
 <data key="NodeDCFName">demodevb2.dcf</data>
 <data key="SupplyDomain">Primary</data>
 <data key="SupplyPoint">0</data>
</port>
<!-- ... -->

Figure 2.4.1. Network specific parameters
defined to ports.

3. Application Examples

In this chapter we present examples of
applying the specified format in two use
cases: network visualization in existing
applications and a generic system
monitoring view implemented in a real
control system.

3.1. Network Visualization

Since Nodelist.graphml format is
GraphML-based, existing GraphML
applications and libraries such as
Graphviz, yEd, Gephi, igraph and
networkx can be used for purposes of
network visualization.
Two examples of network visualization
with Gephi are considered: 1) visualization
of network topology within a single
network, and 2) visualization of multiple
networks their connections.
First, let us consider a single star topology
network as defined in section 5.3 of the
format specification [9]. In this given
example, we have a switch - or a hub -
acting as a centre point of a physical
network, without isolating the branches
logically. A DCF file is assigned to the

switch, because it is assumed to be a
managed switch. This network has been
formally defined in GraphML as according
to the corresponding listing [9].
Figure 3.1.1. presents visualization of this
network in Gephi. Visual parameters are
derived as follows: node positions are read
from GraphML (X and Y data fields),
Gephi is configured to display node and
edge titles (NodeName and CableName
data fields). Nodes are represented using
Sphere 3d shape. Note that the
visualization demonstrates only one
possible way of re-using network data
from a GraphML nodelist - other data
fields could have been chosen for visual
mapping as well.

Figure 3.1.1. Visualization of single star-
topology network with Gephi.

Secondly, let us consider how a topology
of a multi-network CANopen system could
be visualized. Consider a minimal example
in which two nodes, DemoNode _B and
DemoNode _C have been connected
together by a gateway node DemoNode
_A. Such a network has two separate
CANopen networks where the gateway
node is a device in the both of these.

iCC 2012 CAN in Automation

06-16

Figure 3.1.2. Multi-network CANopen
system visualization with Gephi

3.2. System Monitoring

In this section, we will briefly introduce
implementation of a system monitoring
view, which is one of the most important
parts in each distributed control system
GUI, that utitilized the core features of the
Nodelist.graphml format. The specifics of
the implementation are somewhat
extensive and outside the scope of this
work and thus, are not being introduced.

For actual working machines, it is benefial
to provide tools for system monitoring.
System monitoring enables us to
understand the status of CANopen
devices in a system, for instance in
attempt to troubleshoot problems within it.
In figure 3.2.1, a device monitor view in a
system GUI is illustrated. All information
used by the view are directly exported
from a corresponding CANopen project.
Due to limitations of nodelist.cpj file, only
system name, device names and states
can be presented without any relation to
the system layout. Cable breaks are
among the most common failures, but any
connection analysis can not be performed
without more specific information on the
system's structure.

Figure 3.2.1. Onboard device monitor
based on information from nodelist.cpj.

In figure 3.2.2, an alternative system
monitor application utilizing data from a
Nodelist.graphml file is presented.
Following the topology information, we can
now model actual connections between
specific devices in the network. With such
enrichment, troubleshooting can be
improved by drawing the device status
indicators in the correct locations on the

system outline. For instance, if based on
the network status, we see that specific
block of devices are offline, topology
information can be used together with the
status to deduce locations of problems in
physical wiring.

Figure 3.2.2. Onboard system monitor
based on information from
nodelist.graphml.

In addition to the GraphML-based
topology, we also added a 2D visualization
of the associated machine structure. By
doing so we help the device monitor's user
to physically locate devices and their
connections and associated problems.
Depending on the system complexity and
available information, 2.5D background
image (similar to what is implemented in
SmartSimu Harvester Learning
Environment Prototype [18]), could be
used as well for potentially more insightful
visualization.

3.3. Discussion

In this subsection, we demonstrated how
Nodelist.graphml, a GraphML-based
nodelist format, can be used to visualized
structure and parameters of CANopen
networks with Gephi visualization tool.
In comparison to data from only
nodelist.cpj, a GraphML-based format
enabled us to create richer visualizations
of CANopen networks. Most notably,
actual network topology information could
be encoded into the visualizations.
The extent in which GraphML features are
supported is tool-specific. If a given
feature is missing in an application we are
required to use, XML transformations such
as XSLT could be used for format
conversions. By extending this approach
to non-GraphML output formats, support
for some other, arbitrary visualization tools

iCC 2012 CAN in Automation

06-17

could be added. Specifically, with a
GraphML to SVG (Scalable Vector
Graphics) conversion, support for web
browser-based Nodelist.graphml viewing
could be added.
Further and as presented, we have
successfully applied Nodelist.graphml data
for enrichment of a system monitoring tool.
With the help of the topology information,
more sophisticated system monitoring
view could be implemented. A requirement
for the presented, enriched device monitor
is that connections between nodes as well
as their coordinates in relation to the
machine, have been defined in the
GraphML data. Ideas for further improving
the monitor include representing midpoints
in edges illustrating cable routings within
the machine. Additionally, properties of
power supply could be added to the
GraphML data for enabling even more
fine-grained troubleshooting capatibilies.

4. Conclusions

In this article, we presented a new method
for describing CANopen network topology.
A new format using GraphML, an XML-
based graph format, was introduced. By
using a subset of GraphML along with
CANopen-specific new elements and
attributes, topology of a single as well as
multiple CANopen networks could be
captured in a well established graph
format with existing tool support. The new
format was specified in a manner that
allows CANopen design applications to
adopt it while providing a mechanism for
fallback in unsupported software. Methods
for extending the format to contain other
CANopen-specific data as well as
transforming the GraphML-based network
structure to other formats were also
described. Two specific usage examples,
visualization and system monitoring tool
implementation, were also described and
discussed.
In terms of applicability, the specified
Nodelist.graphml format is promising. We
have demostrated that the format and
associated usage method are applicable
to actual design data and informatin re-use
use cases. Yet, some further work needs
to be done in terms of finalizing the
GraphML-based nodelist format, as well

as further demostrating its applicability in
practical use cases.

References

[1] U. Brandes, M. Eiglsperger, I. Herman,
M. Himsolt, and M.S. Marshall. GraphML
Progress Report: Structural Layer
Proposal. Proc. 9th Intl. Symp. Graph
Drawing (GD '01), LNCS 2265, pp. 501-
512. http://www.inf.uni-
konstanz.de/algo/publications/behhm-
gprsl-01.ps.gz
[2] W3C. Extensible Markup Language
(XML). http://www.w3.org/XML
[3] W3C. Namespaces in XML 1.0 (Third
Edition). http://www.w3.org/TR/REC-xml-
names/
[4] W3C. XML Linking Language (XLink)
Version 1.0. http://www.w3.org/TR/xlink/
[5] Gephi. The open graph viz platform.
http://gephi.org
[6] CiA 306 V1.3.0: CANopen electronic
data sheet specification
[7] CiA-306-3 Electronic Device
Description, Part 3: Network variable
handling and tool integration
[8] GraphML Primer
http://graphml.graphdrawing.org/primer/gr
aphml-primer.html
[9] Saha, H., Nykänen, O., Helminen, M.,
Salonen, J. (Eds.). (2011).
Nodelist.graphml Format Specification,
December 13, 2011.
http://wiki.tut.fi/SmartSimulators/NodelistG
raphML
[10] CiA 302 Draft Standard Proposal, Part
7: Multi-level networking. Version: 1.0.0,
02 February 2009.
[11] TUT / SmartSimulators. Semogen.
https://wiki.tut.fi/SmartSimulators/Semoge
n
[12] Nykänen, O., Salonen, J., Markkula,
M., Ranta, P., Rokala, M., Helminen, M.,
Alarotu, V., Nurmi, J., Palonen, T.,
Koskinen, K., Pohjolainen, S.: What Do
Information Reuse and Automated
Processing Require in Engineering
Design? Semantic Process. Journal of
Industrial Engineering and Management
(2011) (Accepted)
[13] Salonen, J., Nykänen, O., Ranta, P.,
Nurmi, J., Helminen, M., Rokala, M.,
Palonen, T., Alarotu, V., Koskinen, K.,
Pohjolainen S. (2011). An Implementation
of a Semantic, Web-Based Virtual

iCC 2012 CAN in Automation

06-18

Machine Laboratory Prototyping
Environment. In: The Semantic Web –
ISWC 2011, Lecture Notes in Computer
Science, 2011, Vol. 7032/2011, pp. 221-
236.
[14] Markkula, M., Rokala, M., Palonen,T.,
Alarotu V., Helminen, M., Koskinen, K. T.,
Ranta, P., Nykänen, O., Salonen, J.
(2011). Utilization of the Hydraulic
Engineering Design Information for Semi-
Automatic Simulation Model Generation.
Proceedings of the Twelfth Scandinavian
International Conference on Fluid Power,
vol. 3, pp. 443-457. May 18-20, 2011,
Tampere, Finland.
[15] ISO 11898-2:2003 - Road vehicles --
Controller area network (CAN) -- Part 2:
High-speed medium access unit
[16] CiA-306-1 Electronic Device
Description, Part 1: Electronic Data Sheet
and Device Configuration File
[17] CiA-311 CANopen Device
Description, XML schema definition
[18] SmartSimu Harvester Learning
Environment Prototype.
https://wiki.tut.fi/SmartSimulators/SmartSi
muHarvester

Matti Helminen
Tampere University of Technology
PL 527, 33101 Tampere, Finland
phone: +358 3 3115 11
email: matti.helminen@tut.fi
www.tut.fi

Jaakko Salonen
Tampere University of Technology
PL 527, 33101 Tampere, Finland
phone: +358 3 3115 11
email: jaakko.salonen@tut.fi
www.tut.fi

Heikki Saha
Sandvik Mining and Construction
PL 100, 33311 Tampere, Finland
phone: +358 (0) 205-44 121
email: heikki.saha@sandvik.com
www.sandvik.com

Ossi Nykänen
Tampere University of Technology
PL 527, 33101 Tampere, Finland
phone: +358 3 3115 11
email: ossi.nykanen@tut.fi
www.tut.fi

Kari T. Koskinen
Tampere University of Technology
PL 527, 33101 Tampere, Finland
phone: +358 3 3115 11
email: kari.t.koskinen@tut.fi
www.tut.fi

Pekka Ranta
Tampere University of Technology
PL 527, 33101 Tampere, Finland
phone: +358 3 3115 11
email: pekka.a.ranta@tut.fi
www.tut.fi

Seppo Pohjolainen
Tampere University of Technology
PL 527, 33101 Tampere, Finland
phone: +358 3 3115 11
email: seppo.pohjolainen@tut.fi
www.tut.fi

