
iCC 2012 CAN in Automation

04-1

CAN in Automotive Applications: A Look Forward

Nicolas Navet (INRIA/RealTime-at-Work), Hervé Perrault (PSA Peugeot-Citroën)

There is today more than 20 years of experience in automotive CAN applications, and
CAN has certainly proven very successful as a robust, cost effective and all-around
network technology. But the use of CAN in vehicles is evolving, in particular because of
more complex and heterogeneous architectures with FlexRay or Ethernet networks, and
because of recent needs like hybrid, electric propulsion or driver assistance that
involves more stringent real-time constraints. Besides, there are other new
requirements on CAN: more fine-grained ECU mode management for energy savings,
multi-ECU splitted functions and huge software downloads. In parallel, safety issues
request more and more mechanisms to protect against potential failures and provide
end-to-end integrity. The development process is also evolving with the advent of multi-
domain cooperation, Autosar, ISO2626-2 and the always shorter time-to-market
requirements. In this landscape, CAN has now to be used at much higher bus load level
than in the past, and there is less margin for error. What does it imply in terms of
verification and validation? What are the characteristics of the communication stacks
that should be paid attention to? This article is intended to shed some light and share
our views on these issues.

CAN: where are we today ?

The advent of CAN
In the middle of the 80s, car makers were
facing the problem of the increasing
amount of wiring and connectors. This was
due to data being exchanged through
point-to-point links between the ECUs
along with the quickly increasing need for
information exchanges among electronic
systems that were gradually replacing
those that were purely mechanical or
hydraulic. Car makers were at a turning
point were electronic equipments needed
to be interconnected all over the vehicle
area. These issues motivated the use of
multiplexed communication networks,
such a VAN or CAN, for interconnecting
ECUs as the engine controller, automatic
gear box, junction box, body controller.
Multiplexing technologies, and specifically
CAN, rise up very fast, and helped to keep
the wiring harness complexity under
control and to satisfy the growing demand
for data broadcasting.

Increased bandwidth requirements
The robustness and performance of the
CAN technology, as well as the new
possibilities brought by distributed software
functions, have motivated engineers to use
more and more bandwidth in order to

improve existing Electrical and Electronic (EE)
functions and introduce new ones. This trend
has never decreased since then, and along
with topology and functional domain
constraints, has led to the use of several CAN
clusters within a car, sometimes more than 4
or 5. Also, the data rates of the CAN buses
are now higher (e.g., 250kbit/s for a body
network when it used to be 125kbits/) and the
load level has increased (e.g., greater than
50%, see §1.4).

More complex architectures
At the beginning of CAN introduction, just few
ECUs were connected, and this for two main
reasons: smooth technological migration and
limitation of development cost. As long as just
a limited number of EE functions were using
CAN, with only tens or hundreds of signals,
EE architectures could be designed on paper
with limited tool support such as an Excel
sheet for bus load evaluation and basic
response time computations. Today there are
thousands of signals exchanged by several
tens of ECUs, with some signals having timing
constraints below 5ms. Besides, the
architectures are becoming complex because
of gateways between the CAN buses or
between a CAN bus and another networking
technology (typically FlexRay). The use of
several CAN clusters raises also technical
issues regarding for instance fault-handling,
diagnosis timing response, wake-up and sleep

iCC 2012 CAN in Automation

04-2

synchronization. And, whatever we do,
there is an overlap between the data sent
on each bus, which induces a significant
waste a bandwidth. To face the EE
architecture complexity, and be able to
push the limits of CAN, car makers have
developed their own toolset as well as they
have established rigorous development
processes. Besides, there are now some
well-suited COTS tools available on the
market.

Optimizing CAN networks
When CAN was introduced, the bus loads
were limited (see [15] for a typical set of
messages of the years 1995-2000) and the
specifications of the communication stack
features, priorities and periods, etc, were
defined more to handle scalability and
overcome microcontroller limitations than
bandwidth optimization.
Optimizing CAN networks, which includes
reaching higher load levels, has now
become an industrial requirement for
several reasons:

1. It helps to master the complexity of
the architectures

2. It reduces the hardware costs,
weight, space, consumption, etc

3. It facilitates an incremental design
process,

4. It may avoid the industrial risk and
the time to master new
technologies,

5. It leads to better communication
performances and helps to match
the bandwidth needs. Sometimes,
a 60%-loaded CAN network can be
more efficient that two 40% CAN
networks interconnected by a
gateway causing delays and high
jitters.

The first obvious way to optimizing a CAN
is to keep the amount of data transmitted to
a minimum, specifically limit the
transmission frequency of the frames. This
requires a rigorous identification and
traceability of the temporal constraints.
Given a set of signals or frames, and their
associated temporal constraints (freshness,
jitters, etc), they are in addition a few
configuration levers than can be triggered:

1. Desynchronize the stream of frames
by using offsets (see Figure 1). The
reader may refer to [14] for
comprehensive experiments on the
large gains achieved using offsets,

2. Reassign the priorities of the frames,
so that the priority order better reflects
the timing constraints,

3. Re-consider the frame-packing [17]
(i.e., allocation of the signals to the
frames and choice of the frame
periods, so as to minimize the
bandwidth usage while meeting timing
constraints),

4. Optimize the ECU communication
stacks so as to remove all
implementation choices that cause a
departure from the ideal CAN behavior
(see §2.3).

Configuration and verification algorithms used
for 1, 2 and 3 have to guarantee the temporal
behavior of the communication system, and
ideally be optimal, or provide lower-bounds on
their efficiency.

Figure 1: Screenshot of NETCAR-

Analyzer [1] showing maximum buffer
utilization and CAN frame worst-case
response times (by decreasing priority) for
different offset configurations. This graph
shows the typical gain one can expect with
offsets.

In our view, a bus load threshold for an “easy”
CAN cluster integration is around 35-40%,
and below this limit, the latencies and
freshness constraints are rather easily
“managed”. Overcoming this limit implies
more detailed supplier specifications on the
one hand, and, on the other hand, to spend
more time and effort in the
integration/validation phase.

iCC 2012 CAN in Automation

04-3

Bridging the gap between models and
implementations

Simulation versus analysis
Early in the development cycle, when ECUs
are not available, simulation models and
analytical models are the two possible
verification techniques. As explained in
[11], both provide complementary results
and, most often, none of them alone is
sufficient. On the one hand, numerous
experiments (e.g., in [11,13]) suggest that
simulation alone is not appropriate to find
the worst case scenarios because they are
too rare (see Figure 2). On the other hand,
worst-case analysis cannot help to quantify
how rare these events are, nor how long
they last, nor what the average (or any
other relevant statistics) of the response

times are.

Figure 2: Worst-case response times (by
decreasing priority of the frames) obtained
by analysis (black curve) versus maximum
values collected during long simulation runs
for two ECU clock drift values (screenshot
of RTaW-Sim [2]).

However, it is possible to derive by analysis
the phasing conditions between ECUs,
specific to each frame, that cause its worst
case response time. Then, using a
simulation tool, it becomes possible to
observe for how long this situation lasts and
where the ECU clock drifts lead from there.
Such simulations also contribute to validate
the results obtained from the analysis tool
(see Figure 3), which is needed because
these tools are usually commercial black
boxes and, though progresses are steadily
being made [3,4,9], they have to make
simplifications about the hardware and the
communication stack [13]. Besides,
because of the complexity of the
schedulability analyses, there is always the
risk that the tool implementation or even the

analysis itself is flawed, as it turned out to be
the case with the basic CAN schedulability
analysis (see [3]).
There are now COTS tools to support the
verification activity, even freely available tools
such as RTaW-Sim [2] for simulation and
NETCAR-Analyzer [1] for schedulability
analysis. For CAN, analysis consists mainly of
schedulability analyses, providing upper
bounds on the considered performance
metrics: latencies, transmission jitters, size of
the waiting queues at the ECUs and gateway
levels, etc.

Figure 3: Worst-case response times (by
decreasing priority of the frames) obtained by
analysis (blue curve) versus maximum values
collected by simulation. The trajectory that
was simulated here is the one leading to the
worst-case response time for a specific frame.
As the black circle shows, the worst-case

response time for that frame is close to what
can be obtained by simulation.

Higher bus loads require more fine-grained
models

Optimized CAN networks means higher
network loads, and indeed they may now
easily exceed 50% of load. But because there
is less slack, there is a need for models that
are more fine-grained than they were in the
past. In particular, models should now account
for:
- Transmission errors [15], and possibly

ECU reboots,
- The use of a periodic communication task

responsible for building the frame and
issuing the transmission requests. In some
cases, this frame may suffer delays
caused by higher priority activities,

- Possible asynchronisms between the
applicative level tasks that produce the
signals and the communication task.
Sometimes such delays can be larger than
the latencies on the CAN bus,

iCC 2012 CAN in Automation

04-4

- More fine-grained models of the
hardware and communication stack
(see §1.6). For instance, taking into
account the ECU clock drifts may
change drastically the conclusions that
can be drawn from a simulation [11].
The same holds for a worst-case
schedulability analysis [4,9] when
explicitly modeling a FIFO waiting
queue.

- Better characterization of the traffic, in
particular the non-periodic part of the
traffic [14] and the transmission jitters
(especially for frames that are
forwarded from one network to
another). The non-periodic traffic is
generally difficult to characterize, but if
overlooked, one will tend to
underestimate the frame latencies as
shown in [14] which, in the worst-case,
may have an impact on the safety.

Figure 4: On the two graphs, the X-axis
shows the index of the aperiodic frames
while the Y-axis is the time between two
succcessive aperiodic transmissions. The
upper graph is a real data trace collected
while driving (only the aperiodic frames).
The lower graph is an artificial data trace
generated with a probabilistic model of the
aperiodic frames (here Weibull interarrivals
with parameters fitted with maximum-
likelihood estimation using the real data
trace). The probabilistic model can be used
both for simulation and worst-case analysis,
as done in [14].

Departure from the ideal CAN behavior
Up to rather recently analytical models
were often much simplified abstraction
of reality: usually overly pessimistic (e.g.
regarding the non-periodic traffic) and
sometimes even optimistic, which
means unsafe in our context. Indeed not
all the classical assumptions made on

the ideal CAN scheduling model are met by
the implementations. Examples include:

- Non-abortable transmit request [7] (some
communication stacks/controllers may not
offer the possibility to cancel lower-priority
transmission requests when a higher
priority frame is released),

- Limited number of transmit buffers [5,6],
- Delays in refilling the transmit buffers [6],
- The use of a FIFO waiting queue for

frames, or any other policy than the
Highest Priority First (see Figure 5). The
reader may refer to [4,9] for an in-depth
treatment of this topic,

- Internal CAN controller message
arbitration based on transmit buffer
number rather than frame ID,

- Frame queuing not done in priority order
(but for example by PDU index in Autosar)
because of the communication stack.

Figure 5: Frame worst-case response times
by decreasing priority on a typical body
network. The blue curve shows the results
when all nodes have prioritized waiting
queues for the frames. The blue curve shows
the actual worst-case response times when
there is one station (out of 15) that possesses
a FIFO waiting queue. As one can observe, in
the latter case many high priority frames will
suffer more delays, and potentially they may
not respect their timing constraints (e.g.,
deadline, jitter in reception).

Whether or not the CAN communication
stacks will depart from the ideal CAN
behaviour may make in practice a large
difference in terms of performance and
predictability. For instance, a single station
with a FIFO queue can create bursts of high
priority frames that will impact the latencies of
the frames sent by all the other stations (see
Figure 5 and experiments in [9]), possibly it
may even propagate to other networks
through the increased jitters of the frames that
are forwarded through the gateways. In a
general manner, if the integrator does not
have control over the communication stacks of

iCC 2012 CAN in Automation

04-5

all the ECUs that make up a system, he
should use conservative assumptions for
the validation. Fortunately, since a few
years and the identification of a flaw in the
original CAN schedulability analysis [8],
significant progresses have been made in
our view and the main issues have been
identified and accounted for in the
schedulability analysis (see references [3-
9]).
Better adherence to the CAN priority
behaviour, can be enforced by more
detailed and more constraining
specifications for the suppliers. Also, to
some extent, the verification can be
performed by tools that analyze
transmission traces such as RTaW-
TraceInspector.

Summary and conclusions
We can consider that when an EE
architecture requires more than 3 or 4 CAN
clusters, it could a better choice to
introduce a new networking technology. As
the most important needs for CAN
bandwidth come from powertrain and
chassis domains, a “natural” technology is
Flexray which provides 10Mbit/s and time-
triggered features. Another technology
which should be considered in the future to
increase bandwidth is the upcoming CAN
FD from Bosch. It may provide a good
trade-off between the difficulty of the
migration path and additional bandwidth
availability.
Nevertheless, in many cases, optimizing
the standard CAN networks will help to
defer the introduction of new technologies,
at least for a subset of car domains. Using
CAN at higher load levels requires however
additional time and effort, be it for the
supplier specifications or the verification.
But in our view the current state of the
technical literature on CAN and the COTS
software tools are now mature enough to
alleviate this additional work and succeed
in building truly safe and optimized CAN-
based communication systems.

Nicolas NAVET
INRIA / RealTime-at-Work
615, rue du Jardin Botanique
54600 Villers-les-Nancy, France
nicolas.navet@inria.fr
http://www.loria.fr/~nnavet

Hervé PERRAULT
PSA Peugeot-Citroën
DTI/DPMO/CSEO/APPT/APTI
(LG010)
18, rue des Fauvelles
92256 La Garenne-Colombes Cedex, France
herve.perrault@mpsa.com

References

[1] RealTime-at-Work, “NETCAR-Analyzer:
Timing analysis and resource usage
optimization for Controller Area
Network,” downloadable at
http://www.realtimeatwork.com/software/n
etcar-analyzer/, 2009.

[2] RealTime-at-Work, “RTAW-Sim: Fine-
grained simulation of Controller Area
Network with fault injection
capabilities”, downloadable at
http://www.realtimeatwork.com/software/rt
aw-sim/, 2009.

[3] R.I. Davis, A. Burns, R.J. Bril, J.J. Lukkien.
“Controller Area Network (CAN)
Schedulability Analysis: Refuted,
Revisited and Revised”. Real-Time
Systems, Volume 35, Number 3, pp. 239-
272, April 2007.

[4] R.I. Davis, S. Kollmann, V. Pollex, F.
Slomka, "Controller Area Network (CAN)
Schedulability Analysis with FIFO
queues”. In proceedings 23rd Euromicro
Conference on Real-Time Systems
(ECRTS), pages 45-56, July 2011.

[5] M. Di Natale, “Evaluating message
transmission times in Controller Area
Networks without buffer preemption”, In
8th Brazilian Workshop on Real-Time
Systems, 2006.

[6] D.A. Khan, R.J. Bril, N. Navet, "Integrating
hardware limitations in CAN
schedulability analysis," IEEE
International Workshop on Factory
Communication Systems (WFCS)
pp.207-210, 18-21 May 2010.

[7] D.A. Khan, R.I. Davis, N. Navet,
“Schedulability Analysis of CAN with Non-
abortable Transmission Requests”. In
proceedings 16th IEEE International
Conference on Emerging Technologies
and Factory Automation (ETFA'11), Sept
5-9th, 2011.

[8] K.W. Tindell, A. Burns. “Guaranteeing
message latencies on Controller Area
Network (CAN)”, In Proceedings of 1st

iCC 2012 CAN in Automation

04-6

International CAN Conference, pp. 1-
11, September 1994.

[9] R.I. Davis, N. Navet, “Controller Area
Network (CAN) Schedulability Analysis
for Messages with Arbitrary Deadlines
in FIFO and Work-Conserving
Queues”, in submission, 2012.

[10] P. Meumeu Yomsi, D. Bertrand, N.
Navet, R.I. Davis, “Controller Area
Network (CAN): Response Time
Analysis with Offsets“, in submission,
2012.

[11] A. Monot, N. Navet, B. Bavoux, C.
Maxim, “Fine-grained Simulation in the
Design of Automotive Communication
Systems”, Embedded Real-Time
Software and Systems (ERTS 2012),
Toulouse, France, February 1-3, 2012.

[12] N. Navet, “Automotive communication
systems: from dependability to
security”, talk at the 1st Seminar on
Vehicular Communications and
Applications (VCA 2011), Luxembourg,
May 2011.

[13] N. Navet, A. Monot, J. Migge, “Frame
latency evaluation: when simulation
and analysis alone are not enough”,
8th IEEE International Workshop on
Factory Communication Systems
(WFCS2010), Industry Day, May 19,
2010.

[14] D. Khan, N. Navet, B. Bavoux, J.
Migge, “Aperiodic Traffic in Response
Time Analyses with Adjustable Safety
Level“, IEEE ETFA2009, Mallorca,
Spain, September 22-26, 2009.

[15] N. Navet, Y-Q. Song, F. Simonot,
“Worst-Case Deadline Failure
Probability in Real-Time Applications
Distributed over CAN (Controller Area
Network)“, Journal of Systems
Architecture, Elsevier Science, vol. 46,
n°7, 2000.

[16] M. Grenier, L. Havet, and N. Navet,
“Pushing the limits of CAN-Scheduling
frames with offsets provides a major
performance boost”, in Proc. of the
4th European Congress Embedded
Real Time Software, January 2008.

[17] R. Saket, N. Navet, “Frame Packing
Algorithms for Automotive
Applications“, Journal of Embedded
Computing, vol. 2, n° 1, pp93-102,
2006.

