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There is today more than 20 years of experience in automotive CAN applications, and 
CAN has certainly proven very successful as a robust, cost effective and all-around 
network technology. But the use of CAN in vehicles is evolving, in particular because of 
more complex and heterogeneous architectures with FlexRay or Ethernet networks, and 
because of recent needs like hybrid, electric propulsion or driver assistance that 
involves more stringent real-time constraints. Besides, there are other new 
requirements on CAN: more fine-grained ECU mode management for energy savings, 
multi-ECU splitted functions and huge software downloads. In parallel, safety issues 
request more and more mechanisms to protect against potential failures and provide 
end-to-end integrity. The development process is also evolving with the advent of multi-
domain cooperation, Autosar, ISO2626-2 and the always shorter time-to-market 
requirements. In this landscape, CAN has now to be used at much higher bus load level 
than in the past, and there is less margin for error. What does it imply in terms of 
verification and validation? What are the characteristics of the communication stacks 
that should be paid attention to? This article is intended to shed some light and share 
our views on these issues. 

CAN: where are we today ? 

The advent of CAN 
In the middle of the 80s, car makers were 
facing the problem of the increasing 
amount of wiring and connectors. This was 
due to data being exchanged through 
point-to-point links between the ECUs 
along with the quickly increasing need for 
information exchanges among electronic 
systems that were gradually replacing 
those that were purely mechanical or 
hydraulic.  Car makers were at a turning 
point were electronic equipments needed 
to be interconnected all over the vehicle 
area. These issues motivated the use of 
multiplexed communication networks, 
such a VAN or CAN, for interconnecting 
ECUs as the engine controller, automatic 
gear box, junction box, body controller. 
Multiplexing technologies, and specifically 
CAN, rise up very fast, and helped to keep 
the wiring harness complexity under 
control and to satisfy the growing demand 
for data broadcasting. 
 

Increased bandwidth requirements 
The robustness and performance of the 
CAN technology, as well as the new 
possibilities brought by distributed software 
functions, have motivated engineers to use 
more and more bandwidth in order to  

 
improve existing Electrical and Electronic (EE) 
functions and introduce new ones.  This trend 
has never decreased since then, and along 
with topology and functional domain 
constraints, has led to the use of several CAN 
clusters within a car, sometimes more than 4 
or 5. Also, the data rates of the CAN buses 
are now higher (e.g., 250kbit/s for a body 
network when it used to be 125kbits/) and the 
load level has increased (e.g., greater than 
50%, see §1.4). 
 

More complex architectures 
At the beginning of CAN introduction, just few 
ECUs were connected, and this for two main 
reasons: smooth technological migration and 
limitation of development cost. As long as just 
a limited number of EE functions were using 
CAN, with only tens or hundreds of signals, 
EE architectures could be designed on paper 
with limited tool support such as an Excel 
sheet for bus load evaluation and basic 
response time computations. Today there are 
thousands of signals exchanged by several 
tens of ECUs, with some signals having timing 
constraints below 5ms. Besides, the 
architectures are becoming complex because 
of gateways between the CAN buses or 
between a CAN bus and another networking 
technology (typically FlexRay). The use of 
several CAN clusters raises also technical 
issues regarding for instance fault-handling, 
diagnosis timing response, wake-up and sleep 
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synchronization. And, whatever we do, 
there is an overlap between the data sent 
on each bus, which induces a significant 
waste a bandwidth. To face the EE 
architecture complexity, and be able to 
push the limits of CAN, car makers have 
developed their own toolset as well as they 
have established rigorous development 
processes. Besides, there are now some 
well-suited COTS tools available on the 
market. 
 

Optimizing CAN networks 
When CAN was introduced, the bus loads 
were limited (see [15] for a typical set of 
messages of the years 1995-2000) and the 
specifications of the communication stack 
features, priorities and periods, etc, were 
defined more to handle scalability and 
overcome microcontroller limitations than 
bandwidth optimization.  
Optimizing CAN networks, which includes 
reaching higher load levels, has now 
become an industrial requirement for 
several reasons: 

1. It helps to master the complexity of 
the architectures 

2. It reduces the hardware costs, 
weight, space, consumption, etc 

3. It facilitates an incremental design 
process, 

4. It may avoid the industrial risk and 
the time to master new 
technologies, 

5. It leads to better communication 
performances and helps to match 
the bandwidth needs.  Sometimes, 
a 60%-loaded CAN network can be 
more efficient that two 40% CAN 
networks interconnected by a 
gateway causing delays and high 
jitters. 

The first obvious way to optimizing a CAN 
is to keep the amount of data transmitted to 
a minimum, specifically limit the 
transmission frequency of the frames. This 
requires a rigorous identification and 
traceability of the temporal constraints. 
Given a set of signals or frames, and their 
associated temporal constraints (freshness, 
jitters, etc), they are in addition a few 
configuration levers than can be triggered:  

1. Desynchronize the stream of frames 
by using offsets (see Figure 1). The 
reader may refer to [14] for 
comprehensive experiments on the 
large gains achieved using offsets, 

2. Reassign the priorities of the frames, 
so that the priority order better reflects 
the timing constraints, 

3. Re-consider the frame-packing [17] 
(i.e., allocation of the signals to the 
frames and choice of the frame 
periods, so as  to minimize the 
bandwidth usage while meeting timing 
constraints), 

4. Optimize the ECU communication 
stacks so as to remove all 
implementation choices that cause a 
departure from the ideal CAN behavior 
(see §2.3). 

Configuration and verification algorithms used 
for 1, 2 and 3 have to guarantee the temporal 
behavior of the communication system, and 
ideally be optimal, or provide lower-bounds on 
their efficiency.  
 
Figure 1: Screenshot of NETCAR-

Analyzer [1] showing maximum buffer 
utilization and CAN frame worst-case 
response times (by decreasing priority) for 
different offset configurations. This graph 
shows the typical gain one can expect with 
offsets. 
 
In our view, a bus load threshold for an “easy” 
CAN cluster integration is around 35-40%, 
and below this limit, the latencies and 
freshness constraints are rather easily 
“managed”. Overcoming this limit implies 
more detailed supplier specifications on the 
one hand, and, on the other hand, to spend 
more time and effort in the 
integration/validation phase. 
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Bridging the gap between models and 
implementations 

Simulation versus analysis 
Early in the development cycle, when ECUs 
are not available, simulation models and 
analytical models are the two possible 
verification techniques. As explained in 
[11], both provide complementary results 
and, most often, none of them alone is 
sufficient. On the one hand, numerous 
experiments (e.g., in [11,13]) suggest that 
simulation alone is not appropriate to find 
the worst case scenarios because they are 
too rare (see Figure 2).  On the other hand, 
worst-case analysis cannot help to quantify 
how rare these events are, nor how long 
they last, nor what the average (or any 
other relevant statistics) of the response 

times are.   
 
Figure 2: Worst-case response times (by 
decreasing priority of the frames) obtained 
by analysis (black curve) versus maximum 
values collected during long simulation runs 
for two ECU clock drift values (screenshot 
of RTaW-Sim [2]).  
 
However, it is possible to derive by analysis 
the phasing conditions between ECUs, 
specific to each frame, that cause its worst 
case response time. Then, using a 
simulation tool, it becomes possible to 
observe for how long this situation lasts and 
where the ECU clock drifts lead from there.  
Such simulations also contribute to validate 
the results obtained from the analysis tool 
(see Figure 3), which is needed because 
these tools are usually commercial black 
boxes and, though progresses are steadily 
being made [3,4,9], they have to make 
simplifications about the hardware and the 
communication stack [13]. Besides, 
because of the complexity of the 
schedulability analyses, there is always the 
risk that the tool implementation or even the 

analysis itself is flawed, as it turned out to be 
the case with the basic CAN schedulability 
analysis (see [3]). 
There are now COTS tools to support the 
verification activity, even freely available tools 
such as RTaW-Sim [2] for simulation and 
NETCAR-Analyzer [1] for schedulability 
analysis. For CAN, analysis consists mainly of 
schedulability analyses, providing upper 
bounds on the considered performance 
metrics: latencies, transmission jitters, size of 
the waiting queues at the ECUs and gateway 
levels, etc.  

 
Figure 3: Worst-case response times (by 
decreasing priority of the frames) obtained by 
analysis (blue curve) versus maximum values 
collected by simulation. The trajectory that 
was simulated here is the one leading to the 
worst-case response time for a specific frame. 
As the black circle shows, the worst-case 

response time for that frame is close to what 
can be obtained by simulation. 
 

Higher bus loads require more fine-grained 
models 

Optimized CAN networks means higher 
network loads, and indeed they may now 
easily exceed 50% of load. But because there 
is less slack, there is a need for models that 
are more fine-grained than they were in the 
past. In particular, models should now account 
for: 
- Transmission errors [15], and possibly 

ECU reboots, 
- The use of a periodic communication task 

responsible for building the frame and 
issuing the transmission requests. In some 
cases, this frame may suffer delays 
caused by higher priority activities, 

- Possible asynchronisms between the 
applicative level tasks that produce the 
signals and the communication task. 
Sometimes such delays can be larger than 
the latencies on the CAN bus, 
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- More fine-grained models of the 
hardware and communication stack 
(see §1.6). For instance, taking into 
account the ECU clock drifts may 
change drastically the conclusions that 
can be drawn from a simulation [11]. 
The same holds for a worst-case 
schedulability analysis [4,9] when 
explicitly modeling a FIFO waiting 
queue.  

- Better characterization of the traffic, in 
particular the non-periodic part of the 
traffic [14] and the transmission jitters 
(especially for frames that are 
forwarded from one network to 
another). The non-periodic traffic is 
generally difficult to characterize, but if 
overlooked, one will tend to 
underestimate the frame latencies as 
shown in [14] which, in the worst-case, 
may have an impact on the safety. 

 

Figure 4: On the two graphs, the X-axis 
shows the index of the aperiodic frames 
while the Y-axis is the time between two 
succcessive aperiodic transmissions. The 
upper graph is a real data trace collected 
while driving (only the aperiodic frames). 
The lower graph is an artificial data trace 
generated with a probabilistic model of the 
aperiodic frames (here Weibull interarrivals 
with parameters fitted with maximum-
likelihood estimation using the real data 
trace). The probabilistic model can be used 
both for simulation and worst-case analysis, 
as done in [14]. 
 

Departure from the ideal CAN behavior 
Up to rather recently analytical models 
were often much simplified abstraction 
of reality: usually overly pessimistic (e.g. 
regarding the non-periodic traffic) and 
sometimes even optimistic, which 
means unsafe in our context. Indeed not 
all the classical assumptions made on 

the ideal CAN scheduling model are met by 
the implementations. Examples include: 

- Non-abortable transmit request [7] (some 
communication stacks/controllers may not 
offer the possibility to cancel lower-priority 
transmission requests when a higher 
priority frame is released), 

- Limited number of transmit buffers [5,6], 
- Delays in refilling the transmit buffers [6], 
- The use of a FIFO waiting queue for 

frames, or any other policy than the 
Highest Priority First (see Figure 5). The 
reader may refer to [4,9] for an in-depth 
treatment of this topic, 

- Internal CAN controller message 
arbitration based on transmit buffer 
number rather than frame ID, 

- Frame queuing not done in priority order 
(but for example by PDU index in Autosar) 
because of the communication stack.  

 
Figure 5: Frame worst-case response times 
by decreasing priority on a typical body 
network. The blue curve shows the results 
when all nodes have prioritized waiting 
queues for the frames. The blue curve shows 
the actual worst-case response times when 
there is one station (out of 15) that possesses 
a FIFO waiting queue. As one can observe, in 
the latter case many high priority frames will 
suffer more delays, and potentially they may 
not respect their timing constraints (e.g., 
deadline, jitter in reception).  
 
Whether or not the CAN communication 
stacks will depart from the ideal CAN 
behaviour may make in practice a large 
difference in terms of performance and 
predictability. For instance, a single station 
with a FIFO queue can create bursts of high 
priority frames that will impact the latencies of 
the frames sent by all the other stations (see 
Figure 5 and experiments in [9]), possibly it 
may even propagate to other networks 
through the increased jitters of the frames that 
are forwarded through the gateways. In a 
general manner, if the integrator does not 
have control over the communication stacks of 
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all the ECUs that make up a system, he 
should use conservative assumptions for 
the validation.  Fortunately, since a few 
years and the identification of a flaw in the 
original CAN schedulability analysis [8], 
significant progresses have been made in 
our view and the main issues have been 
identified and accounted for in the 
schedulability analysis (see references [3-
9]).   
Better adherence to the CAN priority 
behaviour, can be enforced by more 
detailed and more constraining 
specifications for the suppliers. Also, to 
some extent, the verification can be 
performed by tools that analyze 
transmission traces such as RTaW-
TraceInspector.  

Summary and conclusions 
We can consider that when an EE 
architecture requires more than 3 or 4 CAN 
clusters, it could a better choice to 
introduce a new networking technology. As 
the most important needs for CAN 
bandwidth come from powertrain and 
chassis domains, a “natural” technology is 
Flexray which provides 10Mbit/s and time-
triggered features. Another technology 
which should be considered in the future to 
increase bandwidth is the upcoming CAN 
FD from Bosch. It may provide a good 
trade-off between the difficulty of the 
migration path and additional bandwidth 
availability.  
Nevertheless, in many cases, optimizing 
the standard CAN networks will help to 
defer the introduction of new technologies, 
at least for a subset of car domains.  Using 
CAN at higher load levels requires however 
additional time and effort, be it for the 
supplier specifications or the verification. 
But in our view the current state of the 
technical literature on CAN and the COTS 
software tools are now mature enough to 
alleviate this additional work and succeed 
in building truly safe and optimized CAN-
based communication systems. 
 
 
 
Nicolas NAVET 
INRIA / RealTime-at-Work 
615, rue du Jardin Botanique 
54600 Villers-les-Nancy, France 
nicolas.navet@inria.fr  
http://www.loria.fr/~nnavet  
 
 

 
Hervé PERRAULT 
PSA Peugeot-Citroën 
DTI/DPMO/CSEO/APPT/APTI 
(LG010) 
18, rue des Fauvelles 
92256 La Garenne-Colombes Cedex, France 
herve.perrault@mpsa.com  
 
 
References 

[1] RealTime-at-Work,  “NETCAR-Analyzer:   
Timing  analysis  and  resource  usage  
optimization  for  Controller  Area  
Network,”   downloadable  at        
http://www.realtimeatwork.com/software/n
etcar-analyzer/, 2009. 

[2] RealTime-at-Work, “RTAW-Sim:       Fine-
grained    simulation  of  Controller  Area  
Network  with  fault injection    
capabilities”, downloadable at        
http://www.realtimeatwork.com/software/rt
aw-sim/,  2009. 

[3] R.I. Davis, A. Burns, R.J. Bril, J.J. Lukkien. 
“Controller Area Network (CAN) 
Schedulability Analysis: Refuted, 
Revisited and Revised”. Real-Time 
Systems, Volume 35, Number 3, pp. 239-
272, April 2007. 

[4] R.I. Davis, S. Kollmann, V. Pollex, F. 
Slomka, "Controller Area Network (CAN) 
Schedulability Analysis with FIFO 
queues”. In proceedings 23rd Euromicro 
Conference on Real-Time Systems 
(ECRTS), pages 45-56, July 2011. 

[5] M. Di Natale, “Evaluating message 
transmission times in Controller Area 
Networks without buffer preemption”, In 
8th Brazilian Workshop on Real-Time 
Systems, 2006. 

[6] D.A. Khan, R.J. Bril, N. Navet, "Integrating 
hardware limitations in CAN 
schedulability analysis," IEEE 
International Workshop on Factory 
Communication Systems (WFCS) 
pp.207-210, 18-21 May 2010.  

[7] D.A. Khan, R.I. Davis, N. Navet, 
“Schedulability Analysis of CAN with Non-
abortable Transmission Requests”. In 
proceedings 16th IEEE International 
Conference on Emerging Technologies 
and Factory Automation (ETFA'11), Sept 
5-9th, 2011. 

[8] K.W. Tindell, A. Burns. “Guaranteeing 
message latencies on Controller Area 
Network (CAN)”, In Proceedings of 1st 



iCC 2012                                                      CAN in Automation 
 

04-6 

International CAN Conference, pp. 1-
11, September 1994. 

[9] R.I. Davis, N. Navet, “Controller Area 
Network (CAN) Schedulability Analysis 
for Messages with Arbitrary Deadlines 
in FIFO and Work-Conserving 
Queues”, in submission, 2012. 

[10] P. Meumeu Yomsi, D. Bertrand, N. 
Navet, R.I. Davis, “Controller Area 
Network (CAN): Response Time 
Analysis with Offsets“, in submission, 
2012. 

[11] A. Monot, N. Navet, B. Bavoux, C. 
Maxim, “Fine-grained Simulation in the 
Design of Automotive Communication 
Systems”, Embedded Real-Time 
Software and Systems (ERTS 2012), 
Toulouse, France, February 1-3, 2012. 

[12] N. Navet, “Automotive communication 
systems: from dependability to 
security”, talk at the 1st Seminar on 
Vehicular Communications and 
Applications (VCA 2011), Luxembourg, 
May 2011.  

[13] N. Navet, A. Monot, J. Migge, “Frame 
latency evaluation: when simulation 
and analysis alone are not enough”, 
8th IEEE International Workshop on 
Factory Communication Systems 
(WFCS2010), Industry Day, May 19, 
2010. 

[14] D. Khan, N. Navet, B. Bavoux, J. 
Migge, “Aperiodic Traffic in Response 
Time Analyses with Adjustable Safety 
Level“, IEEE ETFA2009, Mallorca, 
Spain, September 22-26, 2009. 

[15] N. Navet, Y-Q. Song, F. Simonot, 
“Worst-Case Deadline Failure 
Probability in Real-Time Applications 
Distributed over CAN (Controller Area 
Network)“, Journal of Systems 
Architecture, Elsevier Science, vol. 46, 
n°7, 2000. 

[16] M. Grenier, L. Havet, and N. Navet,   
“Pushing the limits of CAN-Scheduling 
frames with offsets provides a major 
performance boost”,    in  Proc.  of the  
4th  European Congress Embedded 
Real Time Software, January 2008. 

[17] R. Saket, N. Navet, “Frame Packing 
Algorithms for Automotive 
Applications“, Journal of Embedded 
Computing, vol. 2, n° 1, pp93-102, 
2006. 


