
iCC 2012 CAN in Automation

12-14

CAN Error Injection, a Simple but Versatile Approach

Hauke Webermann, esd electronic system design gmbh
Andreas Block, esd electronic system design gmbh

Nowadays, CAN buses are standard building blocks, not only in automotive area and
industrial automation, but to an increasing degree in safety sensitive areas, including
medical environments, aircraft industry and even in space. With the elevated safety
requirements there's a rising need for verification, simulation and testing. In general,
CAN controllers available on the market are unable to generate CAN traffic containing
errors or violating CAN ISO 11898 standard. This paper describes a simple and
effective approach using flexible FPGA technology to inject errors into CAN buses.
Adding rather small error injection units to a CAN controller within an FPGA provides
means to not only generate all kinds of errors on CAN bus, but also to interact with
and modify ongoing CAN traffic, at the cost of little more than standard CAN
hardware. Error injection units feature several injection modes, such as CAN
arbitration, time triggered or pattern matching, and can be combined to accommodate
more complex scenarios.

Introduction

In this paper, the possibility for an easy to
implement and resource saving solution
for injecting reproducible errors into CAN
buses will be discussed.
The error injection creates the potential to
simulate, test and analyze the behavior of
existing systems. Additionally, there is the
possibility to expand the range of residual
bus simulation with defective CAN
messages.
As peculiarity, it uses the standard CAN
hardware and no special CAN physics. So
the error injection can be implemented on
almost all FPGA based CAN boards. This
has the advantage of testing existing
systems with little effort by the error
injection and without any special test
equipment.
The error injection is a VHDL module and
is an extension to a CAN IP core on an
FPGA based CAN controller board. Via
several trigger modes it is possible to
generate all kinds of errors on CAN
networks. This implies the possibility to
test existing systems with reproducible
CAN errors. Depending on the
configuration, a CAN controller can have

several units, so it is possible to create
complex error scenarios by combining and
cascading these units.
The error injection module is divided into
several error injection units. These units
can be assigned to the different CAN
controllers in the FPGA. Figure 1 shows a
simplified overview of the FPGA structure.
The error injection is an additional module
to a CAN IP core. It works parallel to the
normal function of the CAN controller.

Figure 1: Overview CAN controller board with
error injection

iCC 2012 CAN in Automation

12-15

Figure 2: CAN frame overview (SOF: Start of Frame; ACK: Acknowledge; CRC: Cyclic Redundancy
Check; EOF: End of Frame; IFS: Inter Frame Space)

CAN Protocol and Error Handling

At this point the relevant properties of the
CAN protocol, which are necessary for
error injection will be discussed shortly.
The CAN protocol works on the wired AND
principle. A recessive level only occurs on
the CAN bus, if no tranceiver is actively
driving the bus. The bus is dominant when
at least one tranceiver is sending. A
dominant level always overrides a
recessive level.
This behavior is used among others for the
propagation of errors. A detected error is
indicated to all other nodes by an error
frame, and the transmitted CAN frame will
be destroyed. Figure 3 shows an example
of an active error frame. An error frame is
divided into two parts. The error flag
consists of six bits. This sequence should
not occur and violates the bit-stuffing rule,
since only five identical bits are allowed
consecutively. This way all the other
nodes are notified of a detected error. The
error flag can increase by up to six bits,
because other nodes may notify an error
by a received error flag and so they send
an additionally error frame. The error
frame is completed with an error delimitter
of eight recessive bits. Depending on the
controller state an active or a passive error
frame is sent. A passive error flag consists
of six recessive bits.

Figure 3: Active error frame

 • Bit error
 • Form error
 • Stuff error
 • CRC error

 • Acknowledge error

The bit error can only be detected by a
sending node. Each node reads back the
actual transmitted bit. A bit error occurs if
a different bit is received from the CAN
bus with the exception of the arbitration
phase (see Figure 2). A form error occurs
if one or several dominant bits in the fixed,
predetermined segments are detected
(such as the cyclic redundancy check
(CRC) delimiter). The stuff error occurs
when no inverse bit is received after a
series of five equal bits on the bus. If the
calculated checksum does not match the
received CRC, the acknowledge (ACK) will
not be set and beginning with the
acknowledge delimiter an error frame
propagates the CRC error. An
acknowledge error occurs if no node has
received the frame correctly and thus no

iCC 2012 CAN in Automation

12-16

node overrides the recessive acknowledge
bit.
The CAN bus is encoded in Non-Return-
to-Zero (NRZ), so the information is saved
in the level of the CAN signal. The CAN bit
stream is sampled at a fixed time. This
sample point depends on the baud rate,
the clock rate of the used controller and
the configuration of the “Baud Rate Timing
Register” (BTR).

Concept

In ISO 11898 [1, 2] the CAN protocol is
only defined in OSI layers 1 and 2. An
error injection principally can be done in
both layers. As the error injection is
supposed to work on standard CAN
hardware with standard CAN transceiver,
it only works on the Data-Link-Layer
For the error injection the CAN bus is
reduced to a bit stream with the signals:

 • baud rate
 • sample point

 • sampled bit

In order to implement this as resource
efficiently as possible, no signals should
be generated twice. Many signals are
preset by the CAN IP core. So these
signals and internal states can be used by
the error injection, too.
As already mentioned the error injection
uses standard CAN hardware, thus only
dominant bits can be injected, as dominant
bits cannot be overridden by recessive
bits. Through this characteristic all types of
errors can be generated except for the
acknowledge error.
In order to implement these
characteristics, the preferred solution is a
bit stream injection. For this purpose some
more internal signals out of the CAN IP
core will be needed. Amongst others, a
signal “Point of transmission” is required
for the correct beginning and length of a
bit. Thus, created a small and simple
transmit automat, which sends an user
defined bit stream to the CAN bus via a
shift register. The bit stream is sent
without CRC calculation or bit stuffing.
There is no CAN bus feedback, so the
transmission will not be terminated, if CAN
error frames are encountered. This unit is
called “CAN TX”.

To activate the CAN TX module there are
some trigger modules defined:

• Trigger Pattern Match
• Arbitration
• Trigger Timestamp
• Trigger Field Position
• Trigger External Input

These modules are simple and flexible in
handling. Only one trigger unit can be
activated at a time.
A complete error injection unit is shown in
Figure 4 and consists of the sending
module described (CAN TX) and several
Trigger Units.

Figure 4: Error injection unit

The Trigger Pattern Matching module
can search for a user defined bit stream. If
the bit stream matches the sampled CAN
bit stream, the CAN TX Module is
triggered. Additionally, a bit mask defines
the region which is to be compared. It can
be chosen between the direct CAN bit
stream and the destuffed bit stream.
The Trigger Arbitration sends a bit
stream via the CAN TX module under the
rules of arbitration. It is possible to send
correct CAN frames or CAN frames with
errors. This provides for example the
means to send CAN frames with CRC
errors otherwise impossible with standard
CAN controllers.
With Trigger Timestamp the CAN TX
module is triggered by expired timer.

iCC 2012 CAN in Automation

12-17

The reference implementation CAN board
has an internal 64 bit timestamp and this is
compared with the user defined
timestamp. When the time elapses, the
CAN TX module is triggered.
The Trigger Field Position module
triggers at a specific position in a CAN
frame. For example, it can be set to
trigger within data length code or on CRC
delimiter. In the reference implementation
an error code of a detected error can be
used to configure this trigger module to
repeat or simulate a CAN error
The module Trigger External Input
triggers on an external signal. This may
also be used to combine trigger sources or
to trigger on an event provided by another
error injection unit on another CAN bus.
Each error injection unit has a trigger out
signal which can be an external trigger
source for another trigger module. Via a bit
mask it can be chosen which trigger unit is
the trigger source. Additionally, it is
possible to trigger on an external IO pin.
Supplementary to these trigger modules
there are some global options. It is
possible to delay the enable signal for the
CAN TX module. For this purpose, a delay
time can be set in bit times. A second
option is the repeat flag. With these, the
trigger module is enabled again after the
CAN TX module has sent the bit stream.
There is an additional register (arm delay)
to insert a delay in bit times between each
repetition. For example this can be used to
achieve an exactly defined bus load in
combination with the Trigger Arbitration.
In the error injection module there are
multiple injection units, which can be
configured independently. Each unit can
be assigned to one of the available CAN
networks. The configuration and
assignment of the error injection units are
available from a global register file. The
number of possible units depends on the
size of the FPGA. In standard case there
are four independent error injection units
implemented which can be cascaded.
The output of the CAN IP core and the
associated error injection unit(s) are
combined via an AND logic.The error
injection is connected with the CAN data
stream and behaves passively in idle. It
works in parallel to the CAN IP core and
thus the normal CAN communication is
completely unaffected.

The configuration of this error injection
module can be done directly via the
registers or by an operating system
indipendent application programming
interface (API).

Use Cases

The error injection can be help to improve
the overall robustness in all areas where
CAN is used. This may be in the
aerospace, automotive, medical or general
industrial automation. In the following
three common examples are discussed in
more detail. In all examples an FPGA
based CAN board with error injection is
connected to a system with four external
sensors by a CAN bus.

Use Case I: Defective Sensor

The first scenario is an error frame
injection on the sensor 2. An error injection
unit is configured in Pattern Matching
Mode and the Trigger Pattern is set to the
CAN ID of data from sensor 2. The TX
pattern (the bit stream which is sent by
CAN TX module when triggered) is set to
an Error Frame of six dominant bits.

Figure 5: Use case scenario 1: defective
sensor

iCC 2012 CAN in Automation

12-18

Figure 5 shows the complete scenario.
Sensor 2 maybe a temperature or an
acceleration sensor which sends his value
at any given rate. The activated error
injection unit compares the current bit
stream with the defined sensor CAN ID.
As soon as the Trigger Pattern Match
module detects the CAN ID from sensor 2
in the current CAN bit stream, the stored
error frame is sent and the sent CAN
frame from sensor 2 is destroyed.

Use Case II: Babbling Idiot

The second scenario is the so called
“Babbling Idiot” or “ID Pollution” and
simulates a defective sensor which sends
continuously with a fixed CAN ID. An error
injection unit is configured in Trigger
Arbitration Mode and the repeat flag is set
but without any delay time. The TX pattern
is set to a complete CAN Frame with the
CAN ID 0x100 for example.

Figure 6: Use case scenario 2: "Babbling
Idiot", "ID Pollution"

Figure 6 shows the complete scenario.
The activated error injection unit sends
continuously CAN frames with ID 0x100
back to back, so any CAN frame with an
ID greater 0x100 will loose the arbitration.
Thus the user can check whether vital
CAN frames (e.g. emergency shut down
commands like CANopen NMT messages)
can be sent correctly and whether the
system remains reactive.

Use Case III: Residual Bus Simulation

In the third scenario the system is tested
by a residual bus simulation. The CAN
frames of sensor 3 and sensor 4 are
simulated by the CAN IP core. The data of
sensor 2 is sent by an error injection unit.
This unit is configured in the Trigger
Arbitration mode and sends a CAN frame
with a stuff error for example.

Figure 7: Use case scenario 3: residual
bus simulation

iCC 2012 CAN in Automation

12-19

Figure 7 shows the complete scenario.
The activated error injection unit sends a
corrupted CAN frame in Trigger Arbitration
mode, so the user can check if all CAN
nodes identify the error correctly.

Summary

The error injection provides the means to
inject a user defined bit stream into a
connected CAN bus. Due to the generally
applicable design, the error injection is
very versatile. It can be used on one hand
for complex test scenarios and on the
other hand for residual bus simulation.
The Error Injection is an extension of a
CAN IP core and works with all CAN IP
cores, which provide the aforementioned
internal states and signals.
The outputs of error injection and CAN IP
core are combined to one output signal
within the FPGA. So, no change in the
CAN network cable connection is
necessary.

References:
[1] ISO 11898-1, December 2003: Road
 vehicles – Controller area network (CAN)
– Part 1: Data link layer and physical
signaling.
[2] ISO 11898-2, December 2003: Road
 vehicles – Controller area network (CAN)
– Part 2: High-speed medium access unit.
[3] esd electronic system design gmbh
 (2007): CAN-API. Part 1: Function
 Description. (26. July 2007).
[4] esd electronic system design gmbh
 (2011): CPCI-CAN/400. 4x CAN with
 ARINC Protocol and IRIG-B. (27. April
 2011).
[5] Etschberger, Konrad (2002): Controller-
 Area-Network. Grundlagen, Protokolle,
 Bausteine, Anwendungen. München:
 Hanser.
[6] Philips Semiconductors (2000):
 SJA1000. Stand-alone CAN controller.
 (4. February 2011).
[7] Voss, Wilfried (2005): A comprehensible
 guide to Controller area network:
 Copperhill Technologies Corporation.
[8] Webermann, Hauke (2011): Entwurf,
 Implementierung und Test einer
 Funktionseinheit zur Injektion von
 Fehlern in CAN-Busse.

Hauke Webermann
esd electronic system design gmbh
Vahrenwalder Str. 207
D-30165 Hannover
+49-511-37298-0
+49-511-37298-68
hauke.webermann@esd.eu
http://www.esd.eu

Andreas Block
esd electronic system design gmbh
Vahrenwalder Str. 207
D-30165 Hannover
+49-511-37298-0
+49-511-37298-68
andreas.block@esd.eu
http://www.esd.eu

