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Standardized higher-layer protocols for different purposes 
 
 

Holger Zeltwanger, CAN in Automation (CiA) e. V. 
 
As the CAN standards specified in the ISO 11898 series cover just the lower layers 
(physical and data link layer) of the OSI reference model, the network system designer 
has to deal additionally with the functionality of the higher-layer protocols (from the 
network to the application layer). In many CAN applications, just the application layer 
functions need to be implemented. From the beginning, there was some standardiza-
tion of CAN-based higher-layer protocols requested, in order to save software invest-
ments by means of reusing programs and routines developed for different applica-
tions. The paper provides an overview of “open issues” to be considered and solved 
by the higher-layer protocols, and discusses the different solutions introduced by 
standardized application layers. It is not intended to compare the standardized solu-
tions but to describe the different approaches in respect to system design require-
ments. 
 
The CAN data link layer is one of the most 
reliable communication protocols. But it 
leaves some necessary functions to the 
user. This includes for example the detec-
tion of nodes necessary for a dedicated 
application. Another missing function is the 
segmentation of payloads larger than eight 
bytes and the reassembling of segments 
in the receiving nodes. 
Of course, there are different requirements 
on these higher-layer protocol functions to 
be provided by so-called higher-layer pro-
tocols such as transport layer or applica-
tion layer protocols. Often system design-
ers demand to standardize the user data 
(commands, status, measured values, 
requests, configuration parameter, etc.). 
Of course, this is outside of the 7-layer 
OSI (open system interconnection) refer-
ence model, but is necessary to achieve 
interoperable and interchangeable prod-
ucts. 
The standardization of higher-layer proto-
cols and even profiles is just one side of 
the coin. The other side is the demand of 
easy-to-use system design and configura-
tion tools. Of course, standardized higher-
layer protocols help to develop such tools. 
The tools provided by the CAN chipmak-
ers don’t meet the system designer’s re-
quirements. They are suitable to design a 
device including the low-level driver soft-
ware. But they don’t support the develop-
ment of segmented data transfer proto-
cols, for example. 
The following chapters will discuss the 
“open” issues to be covered by higher-

layer protocols, and will provide a brief 
history of higher-layer protocols. 
 
Detecting missing nodes 
 
When all messages are event-triggered by 
means of Change-of-State (CoS) events, it 
is necessary to detect nodes that are in 
bus-off state. In CANopen, this was done 
by the Node Guarding function. It is based 
on a master/slave relation meaning that 
the NMT (network management master) 
remotely requested the status of the NMT 
slave devices. Using CAN remote frames 
has several disadvantages (for details see 
the CiA 801 application note). The NMT 
slaves also need a time-out mechanism 
(Life Guarding) to detect the absence of 
the NMT master. Nowadays, in CANopen 
the Heartbeat function is recommended for 
detecting missing nodes. DeviceNet has 
used from the beginning a similar Heart-
beat function. 
In J1939-based networks, a Heartbeat 
function is not necessary, because all un-
confirmed messages are transmitted peri-
odically. So, each message provides im-
plicitly an alive-information. This wastes 
bandwidth, if data is not changing. Most of 
the carmakers also transmit all CAN mes-
sages periodically. To be serious, also in 
many non-automotive CAN networks all 
real-time data is transmitted periodically. 
The explicit and implicit alive-information is 
not only necessary to detect bus-off or 
disconnected nodes, but also nodes, 
which are in error-passive mode at high 
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busloads. When a node in error-passive 
mode produces a passive error flag and 
the bus is not idle, the passive error flag 
can’t be completed and the node is there-
fore not able to receive or to transmit mes-
sages. 
 
Node management 
 
Self-starting nodes don’t need to be con-
figured. In many systems with self-starting 
nodes, no dedicated node management is 
implemented. In CAN systems with dedi-
cated node management, normally one 
device is responsible for the network boot-
up process including the configuration of 
nodes as well as the starting and stopping 
of nodes. In CANopen, the NMT master is 
responsible for the node management. In 
order to overcome a single-point of failure, 
CANopen optionally provides the “Flying” 
NMT master protocols. They are used to 
manage the enabling of hot stand-by NMT 
master devices and the negotiation pro-
cess, which NMT master capable device is 
the active NMT master. Normally, the 
node management requires a confirmation 
on the application level (see also below). 
In CANopen, this performed by means of 
the Heartbeat protocol. 
 
Overcoming the “addressing” limits 
 
Originally, the CAN protocol specified just 
the 11-bit identifier, which allows to distin-
guish between 2048 messages. For more 
complex networks this is not sufficient. 
One solution is the prolongation of the 
CAN-ID. That is why the extended frame 
format with 29-bit IDs has been intro-
duced. It is used for example by all J1939-
based networks. The disadvantages are 
the longer bus latency times (about 20 bit-
times) and the higher busload (about 20% 
and more, depending on the data-length). 
Also the CRC performance is lower due 
the longer frame length (for details see 
/CHAR/). 
The other possibility to address more pa-
rameters is, the usage of a part of the da-
ta-field as multiplexor. This approach has 
been chosen for CANopen and DeviceNet, 
for example. Usually, you use one byte for 
protocol control purposes and three other 
bytes for the multiplexer. In CANopen it is 
the 16-bit index and the 8-bit sub-index. In 

DeviceNet a more object-oriented method 
has been used: addressing by means of 
class, instance, attribute (24-bit address). 
Also in some automotive diagnostics pro-
tocols, multiplexors are used (e.g. Unified 
Diagnostic Services). 
The disadvantage is the limitation to less 
than 8-byte parameter. On the other hand, 
the resource of CAN-IDs is saved. In addi-
tion, the bus latency time is not prolonged 
compared to the extended frame format 
using 29-bit CAN-IDs. 
 
Transport protocols for longer data 
 
Parameters that exceed the 8-byte length 
of the data field need to be segmented by 
the transmitter and re-assembled by the 
receivers. In general, all transport proto-
cols (TP) are similar, but in the details are 
different. Most of them provide some flow 
control meaning that there is some confir-
mation of the received segments. Some-
times each segment is confirmed; in other 
TPs there is a number of segments con-
firmed (block transfer). Normally, there are 
positive and negative acknowledgments 
(e.g. abort message). Most of the TPs 
have some limitations regarding the length 
of the parameter, because the use unique 
numbers for each segment. 
 

 
 
Figure 1: RTS/CTS transport protocol of 
J1939 with a maximum length of 1792 
byte with a CTS time-out of 1250 ms 
 
In case of unlimited length, a toggle-bit is 
used, in order to detect a doubled received 
CAN message. A double reception of CAN 
messages could happen, when the last bit 
of end of frame (EOF) is dominant. This is 
interpreted differently by the transmitting 
and receiving nodes. The transmitter re-
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gards this as an error condition (expecting 
that a receiver has evaluated locally a 
dominant sixth bit of EOF). The receiving 
nodes regards a dominant bit in the last bit 
of EOF as an overload condition, because 
they have already accepted the message 
as correct with the sixth bit of EOF, if re-
cessive. 
 
 
Some of the transport protocols confirm 
each segment, while others confirms a 
block of segments. There are protocols 
limiting the length of the segmented trans-
fer (the SDO protocols of CANopen don’t 
limit the size of segmented down- und up-
loads). In most these confirmed protocols 
specify a time-out for the confirmation 
(positive or negative acknowledgement), 
but the SDO time-out is manufacturer-
specific. 
 
Conformation on different levels 
 
The CAN data link protocol provides just a 
confirmation by means of the ACK slot bit. 
This is a confirmation for the transmitting 
node that it is not alone in the network. It 
doesn’t indicate, if the CAN frame has 
been received by all nodes that are con-
figured to receive this message. 
The above-mentioned confirmation of 
segmented messages is still not confirm-
ing that the message content has been 
correctly processed. It is still just a confir-
mation for the transport protocol that this 
segment has been correctly received. 
The confirmation on the application level is 
in J1939-based networks provided by re-
quest messages and status messages. 
This approach is also used in the carmak-
er-specific CAN protocols (message ma-
trix). Similar mechanisms are specified in 
the motion profiles for CANopen and De-
viceNet: The host controller sends a com-
mand-word, which is confirmed by the mo-
tion controller by means of the status-
word. Both are mapped in different CAN 
messages and evaluated by the host con-
troller. 
 
Configuration and program download 
 
In many applications, the CAN network is 
not only used for control purposes, but 
also for the configuration of the nodes and 

the download of programs. Of course, this 
requires a transport protocol. For open 
networks, standardized internal addresses 
are required. If several programs are 
downloadable, standardized functions to 
start and stop programs are needed. In 
CANopen up to 254 internal addresses are 
standardized for programs to be started 
and stopped via CAN. There is additional 
information about the download date and 
time available. This allows using configu-
ration and programming tools from differ-
ent suppliers. 
 
Standardized scheduling of real-time mes-
sages 
 
The scheduling of messages containing 
commands and status information is one 
of the most important tasks of the system 
designer. The periodical transmission of 
messages is still one of the most used 
scheduling modes. In order to save band-
width, system designer may use an event-
trigger (change-of-state) transmission 
mode. CANopen also provides a combina-
tion of both methods: The message is 
send periodically, if no mapped parameter 
changes; but when the parameter chang-
es, the messages is transmitted immedi-
ately. 
 

 
 
Figure 2: In many CAN networks the real-
time data is transmitted periodically (in the 
shown DeviceNet application periodical 
transmission is called “cyclic”, which is 
misleading, because the cycle derives 
from the individual local timer in each de-
vice) 
 
In some applications, coordinated and 
synchronized actions in different nodes 
are necessary. For example, different sen-
sors should sample at the very same mo-
ment their measured values and transmit 
them in different messages. It might be 
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also required to synchronize actuations in 
different nodes. For such applications, 
CANopen provides the SYNC message 
[3], which triggers the simultaneous cap-
turing of sensor values or the validation of 
previously received set-values (e.g. in mul-
ti-axis motion control systems). The maxi-
mum jitter of the periodically transmitted 
SYNC message is about one CAN data 
frame. The synchronization of actions is 
also achievable by a global network time. 
In CANopen this is possible by means of 
the TIME message with accuracy of 1 ms. 
Both methods have the disadvantage that 
the synchronization may be lost due to the 
automatic retransmission of corrupted 
messages. 
 

 
 
Figure 2: Synchronous sampling and ac-
tuating in an asynchronous network by 
means of a SYNC message 
 
The TTCAN protocol (ISO 11898-4) avoids 
this disadvantage. It uses Reference mes-
sages comparable with the SYNC mes-
sage, but for the following messages the 
automatic retransmission is disabled [2]. 
However, TTCAN has not been adopted in 
any “open” higher-layer protocol. 
 
Prioritization of functions and pre-assigned 
CAN-IDs 
 
In embedded networks, the system de-
signer assigns the priority for each mes-
sage to the application requirements. In 
open networks, the CAN-ID contains often 
a unique node-identification. In J1939-
based networks, the CAN-ID identifies the 
content of the messages and a 3-bit priori-
ty. In DeviceNet and CANopen, the pre-
assigned CAN-ID identifies the kind of 
communication service (e.g. I/O message 
or explicit message resp. PDO or SDO) 

and derives also from the unique node-
identification assigned by the system de-
signer. 
 
Bit-timing standardization 
 
Higher-layer protocols for open networks 
need also to determine the bit-timing. 
CANopen, DeviceNet, and the different 
J1939-based networks standardize the 
allowed bit-rates and the sample-methods 
(single or multiple sampling) as well as 
sample-point. The automotive industry has 
also standardized in the SAE J2284 series 
the bit-timing for CAN high-speed net-
works compliant to ISO 11898-2. The only 
one, which allows data-rates up to 1 Mbit/s 
is CANopen, the other restrict the maxi-
mum bit-rate to 250 kbit/s respectively to 
500 kbit/s. Also on the lower end, only 
CANopen supports data-rates up to 10 
kbit/s (note: not all transceiver chips on the 
market support those low bit-rates). 
Most of the higher-layer protocols for open 
networks also specify the pin-assignment 
for connectors and sometimes even for the 
cables to be used. DeviceNet is for exam-
ple more restrict than CANopen, which 
limits the usage of DeviceNet for industrial 
automation. The CANopen recommenda-
tions regarding the physical layer are 
much much more flexible. On the other 
hand, the “harder” specification reduces 
malfunction due to “badly” designed CAN 
networks. 
The “most hardest” CAN physical layer 
specifications (optimized in respect to ro-
bustness and cost) are used in passenger 
cars. The carmakers have spent much 
effort to design proper CAN in-vehicle 
networks. Their approaches are dedicated 
for this application and can’t be used ge-
nerically. 
Some industrial CAN users don’t care on 
the price for the CAN physical layer com-
ponents such as cable and connector. Of 
course, they minimize the disturbance 
possibilities and maximize the robustness 
regarding EMC (electro-magnetic compat-
ibility). 
 
Node claiming and layer setting protocols 
 
In particular in open network environ-
ments, it is a requirement to configure the 
bitrate and a unique node-identification. If 
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this should be done via the CAN interface, 
there are special protocols necessary. 
In J1939-based networks, there is the 
NAME claiming procedure. It “violates” the 
design-rule that a CAN message with vari-
able content must not be sent by two or 
more nodes. The CANopen claiming pro-
cedure described in CiA 416 avoids this 
design-rule violation by using a worldwide 
unique identification (Identity parameter 
1018h). This unique 128-bit device identifi-
cation is also used for the CiA 305 layer 
setting services and protocols (LSS). With 
LSS, CANopen node-IDs and bit-rates are 
changeable in a running system. 
The boot-loader and program download 
functionality as well as the control of appli-
cation software (e.g. starting and stopping) 
are also features that are not covered by 
the 7-layer OSI (open system interconnec-
tion) reference model internationally 
standardized by ISO. I would regard them 
also as layer management functions. 
 
Standardization of application functions 
 
To standardize the communication ser-
vices and protocols is not sufficient to 
achieve interoperability between devices. 
To design interoperable devices requires 
additional standardization of the applica-
tion functions – so-to-say the content of 
the messages (could be process data, 
configuration parameter, or diagnostic in-
formation). In general, there are two ap-
proaches: 
• The system-oriented approach stand-

ardizes all messages transmitted in a 
dedicated application. In which device, 
which application function is imple-
mented, doesn’t matter: The system 
designer has to take care on system 
consistency by means of selecting the 
“right” devices. 

• The device-oriented approach specifies 
individual communication interfaces, 
and the system designer needs to pro-
gram or configure the consistent com-
munication in one or more control units. 

Specifications using the system-oriented 
approach, I like to call application profiles. 
Interface descriptions compliant to the 
device-oriented approach are normally 
named as device or interface profile. 
J1939-based networks are specified in 
application profiles (unfortunately they are 

named application layer – but this is not 
correct). DeviceNet uses device profiles to 
define the process and the configuration 
parameter. In CANopen both approaches 
are used. There are generic (e.g. for I/O) 
and industry-specific (e.g. for corrugator in 
extruder machinery) CANopen device pro-
files; and there are CANopen application 
profiles for dedicated applications (e.g. 
CANopen-Lift, CleANopen, and special-
purpose cars). 
 
Additional network functionalities 
 
In some applications, additional network 
functionality is requested, which is not 
covered by the OSI reference model. This 
includes protocols for safety-related 
transmission of data as specified in CAN-
open-Safety or CIP-Safety for DeviceNet. 
Other protocol functions are data security 
and device redundancy (e.g. Flying NMT 
master protocols for CANopen). Also pro-
tocols dealing with bus-line redundancy, 
and the related swapping mechanisms of 
bus-lines fall into this category of proto-
cols. 

 
 
Figure 4: One of the Flying NMT master 
protocols negotiating the NMT master-
capable device with the highest priority 
 
For CANopen a specific bus-line redun-
dancy for maritime electronics [?] has 
been developed (CiA 302-6). Other proto-
cols requested by complex network archi-
tectures include router and gateway func-
tionality. In CANopen the SDO and EMCY 
router function is specified in CiA 302-7 
(multi-level networking). For diagnostic in 
passenger cars the ISO 15765-2 (trans-
port and network layer services) standard 
includes the gateway functionality. 
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Brief history of CAN-based higher-layer 
protocols and profiles 
 
All standardized communication protocols 
should follow the OSI reference model. It 
was introduced in 1984 and is internation-
ally standardized by ISO 7498-1. The OSI 
model defines internetworking in terms of 
a vertical stack of seven layers. The upper 
layers of the OSI model represent software 
that implements network services like en-
cryption and connection management. The 
lower layers of the OSI model implement 
more primitive, hardware-oriented func-
tions like routing, addressing, and flow 
control. 
This 7-layer architecture doesn’t cover the 
content of the data and doesn’t specify the 
communication with system design tools. 
However, the standardization of the appli-
cation data and the tool communication 
interfaces are essential for interoperability 
and exchangeability of networked devices. 
In the CAN community, the Swedish com-
pany Kvaser was one of the first standard-
izing the communication interface for sys-
tem design tools: In its CAN-Kingdom 
specification (developed in the late 80ies 
and early 90ies) the “King” was the system 
design tool. However, CAN-Kingdom didn’t 
specify the application layer defined in the 
OSI reference model [1]. 
CAN-Kingdom “just” provides standardized 
communication mechanism to design an 
application layer by means of a standard-
ized device configuration. So-to-say, it is a 
layer management protocol and not an 
application layer. All CAN-Kingdom com-
pliant devices support the communication 
with the “King”. CAN-Kingdom provides 
the following functions: 
• The “King” configures, which nodes will 

receive and transmit which messages. 
• It provides an infrastructure for trans-

mitting fixed format data that runs over 
a single CAN packet payload length. In 
CAN Kingdom parlance this is known 
as "document pagination". 

• It allows point-to-point transfer of data 
streams, through the "Block Transfer" 
mechanism. 

• It allows runtime mapping of CAN iden-
tifiers with an optional second level of 
indirection. For the first level, the “King” 
must map himself the CAN-ID from him 

to the "folder". The second level, "fold-
er" to "document", can optionally be 
fixed by the node designer. 

• It provides a mechanism for clock syn-
chronization. 

• It provides a specification for packed bit 
fields. 

• It provides event driven, "daisy chain", 
and synchronous messaging. 

• It provides a mechanism to set mes-
sage filters. 

In the early days of CAN, there were also 
developed the first higher-layer protocols 
based on the OSI reference model. One of 
the very early solutions was the CAN Ap-
plication Layer (CAL) by CiA. It was based 
on ideas developed in Philips Medical Sys-
tems. Other CiA members also contributed 
some ideas and functions. It was a “pure” 
layer-7 protocol not specifying any mes-
sage content. 
In order to satisfy the requirements regard-
ing standardized data content, several 
industries started in 1993 and the following 
years to specify CAN-based higher-layer 
protocols transmitting standardized data. 
Members of the SAE (Society of Automo-
tive Engineers) association developed the 
J1939 set of specifications. Originally, this 
standard was dedicated for powertrain 
applications in trucks and buses. It in-
cludes transport protocols for data longer 
than 8 byte (e.g. RTS/CTS and BAM with 
maximum length of 1792 byte), but speci-
fied mainly 8-byte messages identified by 
the PGN (parameter group number) as 
part of the 29-bit CAN-ID. Each message 
has an 8-byte data field containing one or 
more parameters (equivalent to signals or 
to process data). Not used bits are re-
served. These messages are transmitted 
periodically. The period is determined by 
the SAE J1939-71 or equivalent specifica-
tions and is not configurable. Nowadays, 
the J1939 protocols have been adapted to 
other applications, too: 
• ISO 11992-2/3—Truck/trailer communi-

cation (but only the network for braking 
and running gear equipment as defined 
in part 2 has been implemented) 

• ISO 11783 series (also known as Iso-
bus)—Tractor/implement communica-
tion in agriculture and forestry vehicles 

• IEC 61162-3—network for marine navi-
gation and radio communications 
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equipment aboard all classes of vessels 
including Solas (Safety of Life at Sea) 
vessels. 

However, the transport protocol and the 
application profiles are slightly different. 
But the structure of the CAN-ID usage is 
the same as well as the periodical trans-
mission of parameter group messages. Of 
course, the application profiles will be still 
enhanced. 
In the early 90ties, Allen-Bradley and 
Honeywell Microswitch developed in the 
beginning jointly with American industrial 
users, the idea of a CAN-based network 
for factory automation. After a while, both 
companies went their own ways. This re-
sulted in two different higher-layer proto-
cols: DeviceNet and Smart Distributed 
System (SDS). Both have been interna-
tionally standardized in the IEC 62026 
series. A few years ago, SDS has been 
withdrawn due to missing support by the 
industry. DeviceNet, nowadays supported 
by the ODVA (Open DeviceNet vendor 
association) is completely integrated into 
the CIP (Common Industrial Protocol) ap-
plication layer and device profile approach. 
In Europe, the CANopen application layer 
and its profiles have been pre-developed 
within a European research project. End of 
1994, it was handed-over to CiA for 
maintenance and further developments. 
The CANopen application layer is interna-
tionally standardized in EN 50325-4. The 
CAN-Safety protocol is standardized in EN 
50325-5. 
The CiA 402 CANopen profile (for drives 
and motion controllers) is also internation-
ally standardized in the IEC 61800-7 se-
ries, in which also the CIP motion profile is 
standardized. CiA has also submitted oth-
er CANopen profiles for international 
standardization (e.g. CiA 422: CleANopen, 
and CiA 443: SIIS level-2 devices). The 
usage of CAN networks in rail-vehicles is 
standardized in IEC 61375-3-3. The EN 
13149-4/5/6 technical reports specify the 
CANopen application profile for passenger 
information systems in public transporta-
tion. 
The family of CANopen specifications also 
includes program download functionality, 
(CiA 302-3), configuration manager capa-
bility (CiA 302-3) as well as different other 
layer management functions (e.g. CiA 
305). 

The carmakers developed within the 
OSEK project the OSEK-COM application 
layer. It was even internationally standard-
ized in the ISO 17356 series, but didn’t get 
much support by the automotive industry; 
meaning it was not really implemented. 
Carmakers are using still proprietary appli-
cation layers and profiles (also known as 
communication matrix). 
For diagnostics, the automotive industry 
has standardized the communication. 
Even if it sometimes confusing, the unified 
diagnostic services on CAN (ISO 14229-3) 
and the sub-layered services and proto-
cols (ISO 14229-2: UDS session layer, 
and ISO 15765-2: Transport and network 
layer) are completely standardized and 
used. The carmakers are using also the 
quasi standardized CAN Calibration Pro-
tocol (CCP) and its successor ECP (Ex-
tended Calibration Protocol). With them 
ECUs can be calibrated during the produc-
tion and integration phase. All of these 
protocols use some multiplexer in the data 
field, in order to save the resource of CAN-
IDs. 
 

 
 
Figure 5: The shown Arinc 825 peer-to-
peer protocol allows individual nodes to 
establish client/server type interactions, 
called node services; both connectionless 
as well as connection-oriented communi-
cation (compare to UDP/IP versus TCP/IP) 
is supported 
 
The latest CAN-based higher-layer proto-
col standardization has been achieved by 
the aircraft industry. Within the Arinc asso-
ciation, the Arinc 825/6 specifications have 
been released. These specifications meet 
specifically the requirements of airborne 
applications. It is adapted some ideas of 
the CANaerospace protocol developed in 
the mid 90ties. For details see [4] in this 
proceedings. 
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Summary 
 
Most of the “survived” higher-layer proto-
cols have some similarities. The differ-
ences between them are more or less de-
pending on the roots and on the develop-
ment history. This is similar to human lan-
guages: The English and most of the other 
European languages using not just the 
same set of characters, but also a similar 
set of grammar rules. 
This means, it doesn’t make a technical 
sense to develop an additional higher-
layer protocol for CAN-based systems. 
(As, it makes no sense to create a new 
human language). The application-specific 
requirements can be solved in the specific 
profile specifications. For new designs of 
CAN-based “open” (standardized) net-
works without historical compatibility re-
quirements, CANopen is a suitable com-
promise. It provides the most additional 
functions. The automotive industry has 
selected CANopen as the base of an open 
network for special-purpose cars (CiA 447 
application profile for car add-on devices). 
All existing higher-layer protocols and re-
lated profiles suffer sometimes on the lim-
ited length of the CAN data-field. If this 
would be overcome, this would prolong the 
lifetime of CAN-based networks signifi-
cantly. The proposed CAN-FD data link 
layer is an interesting opportunity. For de-
tails, see [5] and [6] in this proceedings. 
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