
iCC 2012 CAN in Automation

01-1

Standardized higher-layer protocols for different purposes

Holger Zeltwanger, CAN in Automation (CiA) e. V.

As the CAN standards specified in the ISO 11898 series cover just the lower layers
(physical and data link layer) of the OSI reference model, the network system designer
has to deal additionally with the functionality of the higher-layer protocols (from the
network to the application layer). In many CAN applications, just the application layer
functions need to be implemented. From the beginning, there was some standardiza-
tion of CAN-based higher-layer protocols requested, in order to save software invest-
ments by means of reusing programs and routines developed for different applica-
tions. The paper provides an overview of “open issues” to be considered and solved
by the higher-layer protocols, and discusses the different solutions introduced by
standardized application layers. It is not intended to compare the standardized solu-
tions but to describe the different approaches in respect to system design require-
ments.

The CAN data link layer is one of the most
reliable communication protocols. But it
leaves some necessary functions to the
user. This includes for example the detec-
tion of nodes necessary for a dedicated
application. Another missing function is the
segmentation of payloads larger than eight
bytes and the reassembling of segments
in the receiving nodes.
Of course, there are different requirements
on these higher-layer protocol functions to
be provided by so-called higher-layer pro-
tocols such as transport layer or applica-
tion layer protocols. Often system design-
ers demand to standardize the user data
(commands, status, measured values,
requests, configuration parameter, etc.).
Of course, this is outside of the 7-layer
OSI (open system interconnection) refer-
ence model, but is necessary to achieve
interoperable and interchangeable prod-
ucts.
The standardization of higher-layer proto-
cols and even profiles is just one side of
the coin. The other side is the demand of
easy-to-use system design and configura-
tion tools. Of course, standardized higher-
layer protocols help to develop such tools.
The tools provided by the CAN chipmak-
ers don’t meet the system designer’s re-
quirements. They are suitable to design a
device including the low-level driver soft-
ware. But they don’t support the develop-
ment of segmented data transfer proto-
cols, for example.
The following chapters will discuss the
“open” issues to be covered by higher-

layer protocols, and will provide a brief
history of higher-layer protocols.

Detecting missing nodes

When all messages are event-triggered by
means of Change-of-State (CoS) events, it
is necessary to detect nodes that are in
bus-off state. In CANopen, this was done
by the Node Guarding function. It is based
on a master/slave relation meaning that
the NMT (network management master)
remotely requested the status of the NMT
slave devices. Using CAN remote frames
has several disadvantages (for details see
the CiA 801 application note). The NMT
slaves also need a time-out mechanism
(Life Guarding) to detect the absence of
the NMT master. Nowadays, in CANopen
the Heartbeat function is recommended for
detecting missing nodes. DeviceNet has
used from the beginning a similar Heart-
beat function.
In J1939-based networks, a Heartbeat
function is not necessary, because all un-
confirmed messages are transmitted peri-
odically. So, each message provides im-
plicitly an alive-information. This wastes
bandwidth, if data is not changing. Most of
the carmakers also transmit all CAN mes-
sages periodically. To be serious, also in
many non-automotive CAN networks all
real-time data is transmitted periodically.
The explicit and implicit alive-information is
not only necessary to detect bus-off or
disconnected nodes, but also nodes,
which are in error-passive mode at high

iCC 2012 CAN in Automation

01-2

busloads. When a node in error-passive
mode produces a passive error flag and
the bus is not idle, the passive error flag
can’t be completed and the node is there-
fore not able to receive or to transmit mes-
sages.

Node management

Self-starting nodes don’t need to be con-
figured. In many systems with self-starting
nodes, no dedicated node management is
implemented. In CAN systems with dedi-
cated node management, normally one
device is responsible for the network boot-
up process including the configuration of
nodes as well as the starting and stopping
of nodes. In CANopen, the NMT master is
responsible for the node management. In
order to overcome a single-point of failure,
CANopen optionally provides the “Flying”
NMT master protocols. They are used to
manage the enabling of hot stand-by NMT
master devices and the negotiation pro-
cess, which NMT master capable device is
the active NMT master. Normally, the
node management requires a confirmation
on the application level (see also below).
In CANopen, this performed by means of
the Heartbeat protocol.

Overcoming the “addressing” limits

Originally, the CAN protocol specified just
the 11-bit identifier, which allows to distin-
guish between 2048 messages. For more
complex networks this is not sufficient.
One solution is the prolongation of the
CAN-ID. That is why the extended frame
format with 29-bit IDs has been intro-
duced. It is used for example by all J1939-
based networks. The disadvantages are
the longer bus latency times (about 20 bit-
times) and the higher busload (about 20%
and more, depending on the data-length).
Also the CRC performance is lower due
the longer frame length (for details see
/CHAR/).
The other possibility to address more pa-
rameters is, the usage of a part of the da-
ta-field as multiplexor. This approach has
been chosen for CANopen and DeviceNet,
for example. Usually, you use one byte for
protocol control purposes and three other
bytes for the multiplexer. In CANopen it is
the 16-bit index and the 8-bit sub-index. In

DeviceNet a more object-oriented method
has been used: addressing by means of
class, instance, attribute (24-bit address).
Also in some automotive diagnostics pro-
tocols, multiplexors are used (e.g. Unified
Diagnostic Services).
The disadvantage is the limitation to less
than 8-byte parameter. On the other hand,
the resource of CAN-IDs is saved. In addi-
tion, the bus latency time is not prolonged
compared to the extended frame format
using 29-bit CAN-IDs.

Transport protocols for longer data

Parameters that exceed the 8-byte length
of the data field need to be segmented by
the transmitter and re-assembled by the
receivers. In general, all transport proto-
cols (TP) are similar, but in the details are
different. Most of them provide some flow
control meaning that there is some confir-
mation of the received segments. Some-
times each segment is confirmed; in other
TPs there is a number of segments con-
firmed (block transfer). Normally, there are
positive and negative acknowledgments
(e.g. abort message). Most of the TPs
have some limitations regarding the length
of the parameter, because the use unique
numbers for each segment.

Figure 1: RTS/CTS transport protocol of
J1939 with a maximum length of 1792
byte with a CTS time-out of 1250 ms

In case of unlimited length, a toggle-bit is
used, in order to detect a doubled received
CAN message. A double reception of CAN
messages could happen, when the last bit
of end of frame (EOF) is dominant. This is
interpreted differently by the transmitting
and receiving nodes. The transmitter re-

iCC 2012 CAN in Automation

01-3

gards this as an error condition (expecting
that a receiver has evaluated locally a
dominant sixth bit of EOF). The receiving
nodes regards a dominant bit in the last bit
of EOF as an overload condition, because
they have already accepted the message
as correct with the sixth bit of EOF, if re-
cessive.

Some of the transport protocols confirm
each segment, while others confirms a
block of segments. There are protocols
limiting the length of the segmented trans-
fer (the SDO protocols of CANopen don’t
limit the size of segmented down- und up-
loads). In most these confirmed protocols
specify a time-out for the confirmation
(positive or negative acknowledgement),
but the SDO time-out is manufacturer-
specific.

Conformation on different levels

The CAN data link protocol provides just a
confirmation by means of the ACK slot bit.
This is a confirmation for the transmitting
node that it is not alone in the network. It
doesn’t indicate, if the CAN frame has
been received by all nodes that are con-
figured to receive this message.
The above-mentioned confirmation of
segmented messages is still not confirm-
ing that the message content has been
correctly processed. It is still just a confir-
mation for the transport protocol that this
segment has been correctly received.
The confirmation on the application level is
in J1939-based networks provided by re-
quest messages and status messages.
This approach is also used in the carmak-
er-specific CAN protocols (message ma-
trix). Similar mechanisms are specified in
the motion profiles for CANopen and De-
viceNet: The host controller sends a com-
mand-word, which is confirmed by the mo-
tion controller by means of the status-
word. Both are mapped in different CAN
messages and evaluated by the host con-
troller.

Configuration and program download

In many applications, the CAN network is
not only used for control purposes, but
also for the configuration of the nodes and

the download of programs. Of course, this
requires a transport protocol. For open
networks, standardized internal addresses
are required. If several programs are
downloadable, standardized functions to
start and stop programs are needed. In
CANopen up to 254 internal addresses are
standardized for programs to be started
and stopped via CAN. There is additional
information about the download date and
time available. This allows using configu-
ration and programming tools from differ-
ent suppliers.

Standardized scheduling of real-time mes-
sages

The scheduling of messages containing
commands and status information is one
of the most important tasks of the system
designer. The periodical transmission of
messages is still one of the most used
scheduling modes. In order to save band-
width, system designer may use an event-
trigger (change-of-state) transmission
mode. CANopen also provides a combina-
tion of both methods: The message is
send periodically, if no mapped parameter
changes; but when the parameter chang-
es, the messages is transmitted immedi-
ately.

Figure 2: In many CAN networks the real-
time data is transmitted periodically (in the
shown DeviceNet application periodical
transmission is called “cyclic”, which is
misleading, because the cycle derives
from the individual local timer in each de-
vice)

In some applications, coordinated and
synchronized actions in different nodes
are necessary. For example, different sen-
sors should sample at the very same mo-
ment their measured values and transmit
them in different messages. It might be

iCC 2012 CAN in Automation

01-4

also required to synchronize actuations in
different nodes. For such applications,
CANopen provides the SYNC message
[3], which triggers the simultaneous cap-
turing of sensor values or the validation of
previously received set-values (e.g. in mul-
ti-axis motion control systems). The maxi-
mum jitter of the periodically transmitted
SYNC message is about one CAN data
frame. The synchronization of actions is
also achievable by a global network time.
In CANopen this is possible by means of
the TIME message with accuracy of 1 ms.
Both methods have the disadvantage that
the synchronization may be lost due to the
automatic retransmission of corrupted
messages.

Figure 2: Synchronous sampling and ac-
tuating in an asynchronous network by
means of a SYNC message

The TTCAN protocol (ISO 11898-4) avoids
this disadvantage. It uses Reference mes-
sages comparable with the SYNC mes-
sage, but for the following messages the
automatic retransmission is disabled [2].
However, TTCAN has not been adopted in
any “open” higher-layer protocol.

Prioritization of functions and pre-assigned
CAN-IDs

In embedded networks, the system de-
signer assigns the priority for each mes-
sage to the application requirements. In
open networks, the CAN-ID contains often
a unique node-identification. In J1939-
based networks, the CAN-ID identifies the
content of the messages and a 3-bit priori-
ty. In DeviceNet and CANopen, the pre-
assigned CAN-ID identifies the kind of
communication service (e.g. I/O message
or explicit message resp. PDO or SDO)

and derives also from the unique node-
identification assigned by the system de-
signer.

Bit-timing standardization

Higher-layer protocols for open networks
need also to determine the bit-timing.
CANopen, DeviceNet, and the different
J1939-based networks standardize the
allowed bit-rates and the sample-methods
(single or multiple sampling) as well as
sample-point. The automotive industry has
also standardized in the SAE J2284 series
the bit-timing for CAN high-speed net-
works compliant to ISO 11898-2. The only
one, which allows data-rates up to 1 Mbit/s
is CANopen, the other restrict the maxi-
mum bit-rate to 250 kbit/s respectively to
500 kbit/s. Also on the lower end, only
CANopen supports data-rates up to 10
kbit/s (note: not all transceiver chips on the
market support those low bit-rates).
Most of the higher-layer protocols for open
networks also specify the pin-assignment
for connectors and sometimes even for the
cables to be used. DeviceNet is for exam-
ple more restrict than CANopen, which
limits the usage of DeviceNet for industrial
automation. The CANopen recommenda-
tions regarding the physical layer are
much much more flexible. On the other
hand, the “harder” specification reduces
malfunction due to “badly” designed CAN
networks.
The “most hardest” CAN physical layer
specifications (optimized in respect to ro-
bustness and cost) are used in passenger
cars. The carmakers have spent much
effort to design proper CAN in-vehicle
networks. Their approaches are dedicated
for this application and can’t be used ge-
nerically.
Some industrial CAN users don’t care on
the price for the CAN physical layer com-
ponents such as cable and connector. Of
course, they minimize the disturbance
possibilities and maximize the robustness
regarding EMC (electro-magnetic compat-
ibility).

Node claiming and layer setting protocols

In particular in open network environ-
ments, it is a requirement to configure the
bitrate and a unique node-identification. If

iCC 2012 CAN in Automation

01-5

this should be done via the CAN interface,
there are special protocols necessary.
In J1939-based networks, there is the
NAME claiming procedure. It “violates” the
design-rule that a CAN message with vari-
able content must not be sent by two or
more nodes. The CANopen claiming pro-
cedure described in CiA 416 avoids this
design-rule violation by using a worldwide
unique identification (Identity parameter
1018h). This unique 128-bit device identifi-
cation is also used for the CiA 305 layer
setting services and protocols (LSS). With
LSS, CANopen node-IDs and bit-rates are
changeable in a running system.
The boot-loader and program download
functionality as well as the control of appli-
cation software (e.g. starting and stopping)
are also features that are not covered by
the 7-layer OSI (open system interconnec-
tion) reference model internationally
standardized by ISO. I would regard them
also as layer management functions.

Standardization of application functions

To standardize the communication ser-
vices and protocols is not sufficient to
achieve interoperability between devices.
To design interoperable devices requires
additional standardization of the applica-
tion functions – so-to-say the content of
the messages (could be process data,
configuration parameter, or diagnostic in-
formation). In general, there are two ap-
proaches:
• The system-oriented approach stand-

ardizes all messages transmitted in a
dedicated application. In which device,
which application function is imple-
mented, doesn’t matter: The system
designer has to take care on system
consistency by means of selecting the
“right” devices.

• The device-oriented approach specifies
individual communication interfaces,
and the system designer needs to pro-
gram or configure the consistent com-
munication in one or more control units.

Specifications using the system-oriented
approach, I like to call application profiles.
Interface descriptions compliant to the
device-oriented approach are normally
named as device or interface profile.
J1939-based networks are specified in
application profiles (unfortunately they are

named application layer – but this is not
correct). DeviceNet uses device profiles to
define the process and the configuration
parameter. In CANopen both approaches
are used. There are generic (e.g. for I/O)
and industry-specific (e.g. for corrugator in
extruder machinery) CANopen device pro-
files; and there are CANopen application
profiles for dedicated applications (e.g.
CANopen-Lift, CleANopen, and special-
purpose cars).

Additional network functionalities

In some applications, additional network
functionality is requested, which is not
covered by the OSI reference model. This
includes protocols for safety-related
transmission of data as specified in CAN-
open-Safety or CIP-Safety for DeviceNet.
Other protocol functions are data security
and device redundancy (e.g. Flying NMT
master protocols for CANopen). Also pro-
tocols dealing with bus-line redundancy,
and the related swapping mechanisms of
bus-lines fall into this category of proto-
cols.

Figure 4: One of the Flying NMT master
protocols negotiating the NMT master-
capable device with the highest priority

For CANopen a specific bus-line redun-
dancy for maritime electronics [?] has
been developed (CiA 302-6). Other proto-
cols requested by complex network archi-
tectures include router and gateway func-
tionality. In CANopen the SDO and EMCY
router function is specified in CiA 302-7
(multi-level networking). For diagnostic in
passenger cars the ISO 15765-2 (trans-
port and network layer services) standard
includes the gateway functionality.

iCC 2012 CAN in Automation

01-6

Brief history of CAN-based higher-layer
protocols and profiles

All standardized communication protocols
should follow the OSI reference model. It
was introduced in 1984 and is internation-
ally standardized by ISO 7498-1. The OSI
model defines internetworking in terms of
a vertical stack of seven layers. The upper
layers of the OSI model represent software
that implements network services like en-
cryption and connection management. The
lower layers of the OSI model implement
more primitive, hardware-oriented func-
tions like routing, addressing, and flow
control.
This 7-layer architecture doesn’t cover the
content of the data and doesn’t specify the
communication with system design tools.
However, the standardization of the appli-
cation data and the tool communication
interfaces are essential for interoperability
and exchangeability of networked devices.
In the CAN community, the Swedish com-
pany Kvaser was one of the first standard-
izing the communication interface for sys-
tem design tools: In its CAN-Kingdom
specification (developed in the late 80ies
and early 90ies) the “King” was the system
design tool. However, CAN-Kingdom didn’t
specify the application layer defined in the
OSI reference model [1].
CAN-Kingdom “just” provides standardized
communication mechanism to design an
application layer by means of a standard-
ized device configuration. So-to-say, it is a
layer management protocol and not an
application layer. All CAN-Kingdom com-
pliant devices support the communication
with the “King”. CAN-Kingdom provides
the following functions:
• The “King” configures, which nodes will

receive and transmit which messages.
• It provides an infrastructure for trans-

mitting fixed format data that runs over
a single CAN packet payload length. In
CAN Kingdom parlance this is known
as "document pagination".

• It allows point-to-point transfer of data
streams, through the "Block Transfer"
mechanism.

• It allows runtime mapping of CAN iden-
tifiers with an optional second level of
indirection. For the first level, the “King”
must map himself the CAN-ID from him

to the "folder". The second level, "fold-
er" to "document", can optionally be
fixed by the node designer.

• It provides a mechanism for clock syn-
chronization.

• It provides a specification for packed bit
fields.

• It provides event driven, "daisy chain",
and synchronous messaging.

• It provides a mechanism to set mes-
sage filters.

In the early days of CAN, there were also
developed the first higher-layer protocols
based on the OSI reference model. One of
the very early solutions was the CAN Ap-
plication Layer (CAL) by CiA. It was based
on ideas developed in Philips Medical Sys-
tems. Other CiA members also contributed
some ideas and functions. It was a “pure”
layer-7 protocol not specifying any mes-
sage content.
In order to satisfy the requirements regard-
ing standardized data content, several
industries started in 1993 and the following
years to specify CAN-based higher-layer
protocols transmitting standardized data.
Members of the SAE (Society of Automo-
tive Engineers) association developed the
J1939 set of specifications. Originally, this
standard was dedicated for powertrain
applications in trucks and buses. It in-
cludes transport protocols for data longer
than 8 byte (e.g. RTS/CTS and BAM with
maximum length of 1792 byte), but speci-
fied mainly 8-byte messages identified by
the PGN (parameter group number) as
part of the 29-bit CAN-ID. Each message
has an 8-byte data field containing one or
more parameters (equivalent to signals or
to process data). Not used bits are re-
served. These messages are transmitted
periodically. The period is determined by
the SAE J1939-71 or equivalent specifica-
tions and is not configurable. Nowadays,
the J1939 protocols have been adapted to
other applications, too:
• ISO 11992-2/3—Truck/trailer communi-

cation (but only the network for braking
and running gear equipment as defined
in part 2 has been implemented)

• ISO 11783 series (also known as Iso-
bus)—Tractor/implement communica-
tion in agriculture and forestry vehicles

• IEC 61162-3—network for marine navi-
gation and radio communications

iCC 2012 CAN in Automation

01-7

equipment aboard all classes of vessels
including Solas (Safety of Life at Sea)
vessels.

However, the transport protocol and the
application profiles are slightly different.
But the structure of the CAN-ID usage is
the same as well as the periodical trans-
mission of parameter group messages. Of
course, the application profiles will be still
enhanced.
In the early 90ties, Allen-Bradley and
Honeywell Microswitch developed in the
beginning jointly with American industrial
users, the idea of a CAN-based network
for factory automation. After a while, both
companies went their own ways. This re-
sulted in two different higher-layer proto-
cols: DeviceNet and Smart Distributed
System (SDS). Both have been interna-
tionally standardized in the IEC 62026
series. A few years ago, SDS has been
withdrawn due to missing support by the
industry. DeviceNet, nowadays supported
by the ODVA (Open DeviceNet vendor
association) is completely integrated into
the CIP (Common Industrial Protocol) ap-
plication layer and device profile approach.
In Europe, the CANopen application layer
and its profiles have been pre-developed
within a European research project. End of
1994, it was handed-over to CiA for
maintenance and further developments.
The CANopen application layer is interna-
tionally standardized in EN 50325-4. The
CAN-Safety protocol is standardized in EN
50325-5.
The CiA 402 CANopen profile (for drives
and motion controllers) is also internation-
ally standardized in the IEC 61800-7 se-
ries, in which also the CIP motion profile is
standardized. CiA has also submitted oth-
er CANopen profiles for international
standardization (e.g. CiA 422: CleANopen,
and CiA 443: SIIS level-2 devices). The
usage of CAN networks in rail-vehicles is
standardized in IEC 61375-3-3. The EN
13149-4/5/6 technical reports specify the
CANopen application profile for passenger
information systems in public transporta-
tion.
The family of CANopen specifications also
includes program download functionality,
(CiA 302-3), configuration manager capa-
bility (CiA 302-3) as well as different other
layer management functions (e.g. CiA
305).

The carmakers developed within the
OSEK project the OSEK-COM application
layer. It was even internationally standard-
ized in the ISO 17356 series, but didn’t get
much support by the automotive industry;
meaning it was not really implemented.
Carmakers are using still proprietary appli-
cation layers and profiles (also known as
communication matrix).
For diagnostics, the automotive industry
has standardized the communication.
Even if it sometimes confusing, the unified
diagnostic services on CAN (ISO 14229-3)
and the sub-layered services and proto-
cols (ISO 14229-2: UDS session layer,
and ISO 15765-2: Transport and network
layer) are completely standardized and
used. The carmakers are using also the
quasi standardized CAN Calibration Pro-
tocol (CCP) and its successor ECP (Ex-
tended Calibration Protocol). With them
ECUs can be calibrated during the produc-
tion and integration phase. All of these
protocols use some multiplexer in the data
field, in order to save the resource of CAN-
IDs.

Figure 5: The shown Arinc 825 peer-to-
peer protocol allows individual nodes to
establish client/server type interactions,
called node services; both connectionless
as well as connection-oriented communi-
cation (compare to UDP/IP versus TCP/IP)
is supported

The latest CAN-based higher-layer proto-
col standardization has been achieved by
the aircraft industry. Within the Arinc asso-
ciation, the Arinc 825/6 specifications have
been released. These specifications meet
specifically the requirements of airborne
applications. It is adapted some ideas of
the CANaerospace protocol developed in
the mid 90ties. For details see [4] in this
proceedings.

iCC 2012 CAN in Automation

01-8

Summary

Most of the “survived” higher-layer proto-
cols have some similarities. The differ-
ences between them are more or less de-
pending on the roots and on the develop-
ment history. This is similar to human lan-
guages: The English and most of the other
European languages using not just the
same set of characters, but also a similar
set of grammar rules.
This means, it doesn’t make a technical
sense to develop an additional higher-
layer protocol for CAN-based systems.
(As, it makes no sense to create a new
human language). The application-specific
requirements can be solved in the specific
profile specifications. For new designs of
CAN-based “open” (standardized) net-
works without historical compatibility re-
quirements, CANopen is a suitable com-
promise. It provides the most additional
functions. The automotive industry has
selected CANopen as the base of an open
network for special-purpose cars (CiA 447
application profile for car add-on devices).
All existing higher-layer protocols and re-
lated profiles suffer sometimes on the lim-
ited length of the CAN data-field. If this
would be overcome, this would prolong the
lifetime of CAN-based networks signifi-
cantly. The proposed CAN-FD data link
layer is an interesting opportunity. For de-
tails, see [5] and [6] in this proceedings.

References

[1] K. Lennartsson: Servicing a CAN-
Kingdom system (in: iCC proceedings
1997)
[2] Th. Führer, and others: Time-triggered
communication on CAN (in: iCC proceed-
ings 2000)
[3] M. Rostan, J. Langfermann: High-
precision drive synchronization with CAN-
open (in: iCC proceedings 2002)
[4] R. Knüppel: Standardization of CAN
networks for airborne use through Arinc
825 (in: iCC proceedings 2012)
[5] F. Hartwich: CAN with flexible data-
rate (in: iCC proceedings 2012)
[6] H.-J. Oertel: Using CAN with flexible
data-rate in CANopen systems (in: iCC
proceedings 2012)

All iCC proceedings are published by CiA
in Nuremberg (Germany).

Holger Zeltwanger
CAN in Automation e. V.
Kontumazgarten 3
DE-90429 Nuremberg
Tel. +49-911-928819-0
Fax +49-911-928819-79
headquarters@can-cia.org
www.can-cia.org

