
iCC 2013 CAN in Automation

 08-8

CANopen on CAN FD

Dr. Martin Merkel, Ixxat Automation GmbH

Following the presentation of the new CAN FD technology by Bosch during the
international CAN Conference in 2012, CAN in Automation has initiated work to extend
the CANopen standards to incorporate the new possibilities offered by this enhanced
CAN standard.
To support this standardization effort, the technical activities previously performed
within the interest group CANopen have been spun off to a new CANopen SIG
application layer which currently works on an update of CiA 301, the basic CANopen
specification.
This paper presents the current status of the standardization process within the SIG
application layer and also discusses possible enhancements of different device
profiles with respect to the new technology.

Introduction

At close to 20 years old, CANopen
continues to be one of the most popular
higher level protocols available for CAN,
the Controller Area Network.
Despite the bandwidth limitation of 1 Mbit/s
– which seems to be outdated in a world of
Gigabit Ethernet and fast wireless
networks – CAN offers many advantages
as the data link layer for industrial
communication protocols such as
CANopen due to the event driven
communication and the CSMA/CR bus
arbitration scheme.
The main reason of the success of
CANopen appears to be its flexibility that
resulted in the development of an ever
increasing number of device and
application profiles in areas that were not
considered at all during the initial design
work on CANopen. Admittedly in some of
these application domains higher
communication bandwidth becomes more
and more important. This resulted in the
increasing popularity of Ethernet based
industrial protocols, with some of them
essentially reusing the device or
application profiles originally developed for
CANopen.
CAN based communication networks are
however still the solution of choice for
applications that do not inherently have the
highest bandwidth requirements for a
number of reasons:

• Large number of available micro
controllers with integrated CAN
controller(s)

• Significantly lower connection costs
per CAN node compared to Ethernet

• High communication reliability due to
advanced error detection functionality

• Efficient fault confinement
The presentation of the CAN with flexible
data rate (CAN FD) data link layer protocol
by Robert Bosch GmbH at the
international CAN Conference in 2012 [1],
promises to significantly reduce the
performance disadvantage of CAN
compared to Ethernet based technologies.
In the sections below we first give a brief
introduction into CAN FD and then discuss
the standardization process with the SIG
application layer for a new version 5.0 of
CANopen based on the CAN FD
technology.

CAN FD in Brief

Retaining the core features of CAN, Bosch
has improved the CAN protocol in two
different areas:
• Increase of the transmission speed in

the data field
• Increase of the data payload to up to

64 byte
CAN FD can operate with two alternate bit
rates. In the arbitration phase and during
acknowledgment of the CAN FD frame the
bit rate of the bus is still limited to 1 Mbit/s,
depending on the overall network length.

iCC 2013 CAN in Automation

08-9

This is a result of the requirement that the
signal propagation time between any two
nodes in the network is less than half of
one bit time.
After the bus arbitration the bit rate may be
switched to a higher bit rate for the data
field. The CAN FD frame format uses the
reserved bit r0 in the CAN control field to
select the modified frame format. Due to
the backwards compatibility of the new
protocol, CAN FD controllers can operate
in standard CAN communication networks,
which again allows for a gradual
integration of CAN FD capable devices
into existing CAN systems.

Work plan of the SIG Application Layer

The discussions within the CiA working
group defining a CANopen communication
protocol based on CAN FD started on the
assumption that the maximum payload
available for user data will be 64 byte. The
configuration of the higher bit rate during
the data field of the CAN FD frame has
been considered to be outside the scope
of CiA 301 and therefore was referred to
the task force LSS (Layer setting services)
which will work on an update of [6] that
includes additional services and protocols
to configure the CAN FD bit timing. During
the inaugural meeting of the SIG
application layer in March 2013 the
following work plan was defined:
• Clarification of CANopen NMT and

error FSAs (not related to CAN FD)
• Revision of PDO services and

protocols
• Enhancement of SDO services
• Other protocols and services
• Introduction of new object dictionary

entries (partially related to CAN FD)
Not addressing the FSA issues and
additional object dictionary entries, the
following sections will focus on PDO and
SDO protocols, followed by a brief
discussion of the other protocols such as
NMT, SYNC, EMCY, and TIME.
We also like to point out that this paper
represents the status of the discussions
within the SIG application layer at the time
of writing of this paper and may not
necessarily correspond to the final
protocols that will be published in CiA 301
version 5.0.

PDO Services in CAN FD Networks

As already discussed during the
international CAN Conference 2012 [2],
extending the specification of the PDO
services and protocols to make use of the
extended CAN FD payload is
straightforward. The current PDO mapping
parameter records at the object dictionary
indices following 1600h and 1A00h can be
retained without modification. Each of
these records represents an array of
individual mapping entries of data type
UNSIGNED32 that contain index, sub-
index, and length of the mapped
application object.

Figure 1: Structure of PDO mapping entry
In the published CiA 301 specification [3]
the number of mapping entries is limited to
64 allowing for up to 64 BOOLEAN objects
to be mapped. Theoretically, this number
could be increased to 253, considering
that the values 254 and 255 for sub-index
00h are reserved to indicate that the
corresponding PDO is formatted as a
multiplexed PDO. The only use case that
would profit from such an increase is the
requirement to map a significant number of
BOOLEAN objects.
The discussions within the SIG application
layer resulted in consent that mapping of
BOOLEAN objects has a negative impact
on the device performance. Given that
transmission of single bits is neither
supported by classical CAN nor CAN FD it
was therefore suggested to introduce a
minimum PDO mapping granularity of one
byte. Doing so would also solve the issue
with the complexity of mapping a number
of BOOLEAN objects that is unequal to 8
followed by objects of a size which is a
multiple of one byte.
As some CiA device profiles currently
specify BOOLEAN parameters (see for
example [7], [9], [10], [11], [12], and [13])
that are partially also used as part of the
default PDO mapping [14], discontinuing
support for single bit granularity will not be
possible without changes to those device
profiles.

Length
7 0

Sub-index
15 8

Index
31 16

0 1 2 3

iCC 2013 CAN in Automation

08-10

It is therefore suggested to retain the
current definitions with respect to the PDO
mapping but encourage the SIGs to refrain
from using data types with a length that is
not an integer multiple of one full byte.
Another aspect of CAN FD is that not all
controllers may support 64 byte data
fields. Configuration software therefore
cannot assume that the maximum data
field size will be available for mapping of
application objects. At run-time this is
addressed with the SDO abort code
0604 0042h indicating that the
accumulated length of the mapped
application objects exceeds the available
PDO length. During offline system
configuration this information is not
available. The SIG application layer will
therefore propose a new object in the
communication profile area of the object
dictionary that shall indicate the CAN FD
capabilities of a device.
Due to the variable granularity of the
CAN FD data field length (see Table 1),
run-time verification of the correct PDO
length by the receiver will not be possible
either or only of limited use.
Table 1: Supported lengths of a CAN FD
data field

DLC Number of data bytes
0 0

..
8 8
9 12
10 16
11 20
12 24
13 32
14 48
15 64

In the case the configured PDO mapping
does not use the entire data field up to the
next possible length, SIG application layer
proposes to set the trailing bytes to the
value 00h. A PDO with a configured data
content of 14 bytes will therefore be
transmitted as a frame with 16 data bytes,
including 2 trailing 00h bytes. As 00h may

constitute valid data the receiver cannot
detect if a configuration error is present or
not. Emergency messages with error

codes 8210h (PDO not processed due to
length error) or 8220h (PDO length
exceeded) may therefore become
obsolete.
In summary, the specification of PDO
services can be retained as is. 64 entries
in the PDO mapping record will allow
mapping of 64 byte parameters – which is
the typical data size used for digital
channels – into one PDO. More important,
up to 32 INTEGER16 values – the
representation typically used for analog
data – will fit into one PDO, compared to
the 4 analog signals that could be mapped
into one data frame with classic CAN.

SDO Services in CAN FD Networks

The specification of SDO services that
make use of the extended frame format
available with CAN FD is not as obvious
as with PDO services. In the original
design of CANopen, SDO services were
optimized for the maximum of 8 data bytes
supported by classic CAN within one
frame. Extending these services to profit
from the maximum data field length of
64 bytes offers interesting new possibilities
but also poses some challenges that are
inherently given by the current protocol
specifications.
The initial requirements for SDO services
based on CAN FD as discussed within the
SIG application layer were:
• Backwards compatibility with currently

specified SDO services
• CAN FD based SDO transfer shall be

based on classic SDO block transfer
• Data transfer shall already be possible

during initialization
• The frame length shall be adapted to

the size of the application data
• Reading respectively writing of entire

complex objects should be possible
After the first round of discussions within
the SIG application layer members
expressed concerns to base an enhanced
CAN FD capable SDO protocol on the
block transfer mode as this may impose
high requirements on micro controller
performance and buffer size to handle long
bursts of 64 byte CAN FD frames.
It was therefore suggested to initially
pursue a path where a CAN FD SDO
mode would be based on the classic
normal (segmented) SDO transfer.

iCC 2013 CAN in Automation

08-11

The introduction of an entirely new service,
complementing the currently specified
communication modes expedited, normal
(segmented), and block transfer that
covers the requirements listed above is not
possible as all available command
specifiers (Table 2) are already allocated
for existing services.

Table 2: Command specifiers defined for
SDO protocols
Command
specifier

Description c/s

Protocol SDO download
1 Initiate download request c
3 Initiate download response s
0 Download segment request c
1 Download segment response s
Protocol SDO upload
2 Initiate upload request c
2 Initiate upload response s
3 Upload segment request c
0 Upload segment response s
Protocol SDO block download
6 Block download initiate c
5 Block download initiate s
5 Block download sub-block s
6 Block download end c
5 Block download end s
Protocol SDO block upload
5 Block upload initiate c
6 Block upload initiate s
5 Block upload sub-block c
6 Block upload end s
5 Block upload end c
Protocol SDO abort transfer
4 Abort transfer request c/s
SDO network indication protocol1
7 Network indication request c
7 Network indication response s

The only option available is therefore to
extend one of the currently available SDO
protocols to make use of the extended
data field.
In the following sections we discuss the
three different transfer modes.

Expedited SDO Transfer

SDO services represent point to point
communication channels between a SDO
client and a SDO server. The transfer is
always initiated by the client, and the SDO
server will either confirm or abort the
transfer, depending on if it can serve the
request.

1 Specified in CiA 302-7 [5]

In a typical CANopen device the majority
of object dictionary entries are of size 4
bytes or less. During the original design of
CANopen it was therefore felt that an SDO
transfer mode is required which is
optimized to address such 4 byte or
smaller objects. A second design goal was
that all SDO transfer modes shall use a
common initialization sequence after which
it is decided, which transfer mode is finally
used. Figure 2 is a representation of the
protocol sequence SDO download initiate.
For small objects of up to 4 bytes, this
sequence constitutes the complete
transfer.

Figure 2: Protocol SDO download initiate
The command byte of the download
protocol consists of a command specifier
and a number of format flags that indicate
the type of the requested transfer mode
and – depending on the transfer mode –
the size of the transferred application data.
In the case of the expedited transfer, the
size is indicated in a two bit field n, the
value of which stands for the number of
bytes in the data field d that do not contain
valid data.
Even assuming that we will not always use
the maximum frame length of CAN FD in
an extended expedited SDO protocol, we
still have the problem that the currently
available field n will not be sufficient to
indicate the data size of a transferred
object, as up to 15 bytes may not contain
valid object data (size difference due to the

0 1 3 4 7

ccs = 1
7 .. 5

x
4

n
3 .. 2

e
1

s
0

m

d

scs = 3
7 .. 5

m

reserved

x
4 .. 0

0 1 3 4 7

ccs Client command specifier
scs Server command specifier
e Transfer type
s Size indicator
n Only valid if e = 1 and s = 1, otherwise 0.
 If valid it indicates the number of bytes in
 d that do not contain data
x Not used, always 0
m Multiplexor, index and sub-index
d Data

iCC 2013 CAN in Automation

08-12

frame length constraints between 48 and
64 byte minus 1 byte user data, see also
Table 1).
As the SDO upload protocol (Figure 3) is
very much identical to the download
protocol, we conclude that using the full 64
byte data field is not possible without
significantly modifying the existing SDO
protocol definitions for the expedited
transfer.

Figure 3: Protocol SDO upload initiate
Therefore, the SIG application layer
proposes to retain the current specification
of the expedited SDO protocol with frames
containing exactly 8 data bytes as is.

Normal (segmented) SDO Transfer

Before CANopen version 4.0, the normal
transfer mode was the only means to
transfer data blocks larger than the size
limit of 8 bytes imposed by classic CAN.
With the segmented SDO protocols, the
data transfer is continued after the
initialization phase with the protocol SDO
download (Figure 4) respectively upload
(Figure 5).

Figure 4: Protocol SDO download
segment

Figure 5: Protocol SDO upload segment
The segment protocol uses a data frame
with one command byte and up to 7 bytes
of user data and a second full length CAN
frame that practically contains no
information other than that the previous
segment data have been received.
As a result of the significant protocol
overhead the segmented transfer offers
only limited throughput, but also does not
impose high performance requirements on
the target hardware as each individual
segment is confirmed.
If transposed onto a CAN FD logical layer,
one would likely abandon the requirement
that both request and response frames in
the SDO segment protocol have
symmetrical data length, a feature that has
been criticized by some already for the
implementation on classic CAN.
The SDO specifications in [3] use the
combinations [e = 0, s = 1], [e = 1, s = 1],
and [e = 1, s = 0] to indicate transfer mode
and size of the data to be transferred. For
the combination [e = 0, s = 0] the data field
d is reserved by CiA for future use.
A possible SDO upload request sequence
for a CAN FD capable system could look
as described in Figure 6. In the SDO
upload initiate protocol, the SDO client
needs to provide as additional information
the maximum CAN FD frame length
supported by the client (mfl), and if the
upload request shall address a single entry
or all entries of a complex object (ms). For
the maximum supported frame length a
coding as in the DLC field of the CAN FD
frame (Table 1) will be used. We propose
the combination [e = 0, s = 0] to indicate
that those two parameters are be coded in
the bytes 4 to 7 that are reserved in [3]. A
possible coding with the proposed protocol
enhancements highlighted in gray is
shown in Figure 6.

0 1 3 4 7

scs = 2
7 .. 5

x
4

n
3 .. 2

e
1

s
0

m

d

0 1 3 4 7

ccs = 2
7 .. 5

m

reserved

x
4 .. 0

ccs = 0
7 .. 5

segment data

n
3 .. 1

0 1 7

t
4

c
0

ccs = 1
7 .. 5

reserved

t
4

x
3 .. 0

0 1 7

t Toggle bit
c Indicates whether more segments are to

be downloaded

ccs = 3
7 .. 5

t
4

x
3 .. 0

reserved

0

1 7

c
0

n
3 .. 1

scs = 0
7 .. 5

t
4

segment data

0 1 7

iCC 2013 CAN in Automation

08-13

Figure 6: Protocol SDO upload initiate on
CAN FD
Current SDO server implementations will
ignore the information in the reserved field
and continue the transfer using either
expedited or normal transfer modes.
A SDO server that is implemented
according to an updated, CAN FD aware
CiA 301 specification may use the
combination [e = 0, s = 0] to indicate that
format flags are contained in the currently
reserved field d of the SDO initiate upload
response. The format flags need to contain
the following information:

• Indication if object size information is

provided or not
• Number of (in)valid data bytes in the

response frame
• Indication if this response or segment

is the last frame in the transfer

For reasons of a simplified implementation
it may be attractive to define a format for d
that could be reused as control word in
subsequent segment protocols. This would
imply that additional fields are reserved for
a command specifier and a toggle bit.
Introducing a segment counter may also
appear attractive but is not easily possible
if the requirement for an unlimited transfer
size is maintained.
Figure 7 shows a proposal for the data
field d in the response to the SDO upload
initiate protocol. If bit s is set to a value of
1, the 4 bytes following d in the CAN FD
frame (Byte 8 to 11) would contain the size
of the object to be transferred (Figure 8).

Figure 7: Proposed layout for d in the
response frame to the protocol SDO
upload request

Bytes 2 and 3 currently remain unused
and are reserved. The control information
could be alternatively shortened to a 2
byte word.

Figure 8: Proposed location for the size
information within a CAN FD frame
This implies that the proposed protocol will
only be applicable to CAN FD controllers
that implement the larger data frame
format. For CAN FD controllers that only
support the bit rate switch, but retain the 8
byte data field, it is suggested to reuse the
normal transfer (see Figure 2 to Figure 5)
specified in [3] as is.

Figure 9: Proposed protocol SDO segment
upload using CAN FD frames

The proposed enhanced segment protocol
(Figure 9) will offer similar functionality as
the currently specified normal transfer
mode [3], but will offer significant
performance improvements due to the
reduced protocol overhead, even if less
than the full 64 byte CAN FD payload is be
used.

n = 0
e = 0 Segmented transfer
s = 0 Size is not indicated in d
d See Figure 7

d

scs = 2
7 .. 5

x
4

n
3 .. 2

e
1

s
0

m

0 1 3 4 7

mfl
4 bits

ms
1 bit

ccs = 2
7 .. 5

x
4 .. 0

m

0 1 3 4 5 6 7

t
4

c
0

s
1

x
3 .. 2

reserved

x
7 .. 5

n
3 .. 0

4 5

x
7 .. 4

6 7
x Not used, always 0

cmd m

d

size

0 1 3 4 7 8 11 12
cmd Command word

0 1

ccs=3

7 .. 5

t

4

x

0 1 2 n (n = mfl)

scs=0
7 .. 5

t
4

c
0

x
3 .. 1

x
7 .. 4

n
3 .. 0

segment data

x Not used, always 0
t Toggle bit
c Indicates whether more segments are to

be uploaded

iCC 2013 CAN in Automation

08-14

SDO Block Transfer

The SDO block transfer was introduced
with CANopen version 4.0 to overcome the
throughput limitations of the normal
transfer mode introduced in the initial
CANopen design. The main difference
between the two transfer modes normal
and block is that block transfer does not
require each individual segment to be
confirmed. Data are transmitted as a
sequence of sub-blocks of 8 byte
segments with a maximum burst length of
at most 127 segments within a sub-block
(Figure 11). Each segment contains a
sequence counter and a flag to indicate if
the current segment is the last segment in
the transfer. A confirmation is only sent
after each sub-block. The transfer is
concluded with the protocol SDO block
download end which contains an optional
16 bit CRC checksum.

Figure 10: Protocol SDO block download
initiate

Figure 11: Protocol SDO block download
sub-block

To use the extended data field with the
SDO block transfer, the SDO client and
the SDO server have to indicate their
maximum supported frame length (mfl).
This could be introduced in a similar way
as with the normal (segmented) SDO
transfer by using one of the reserved bytes
in the protocol SDO upload initiate to code
mfl based on the coding in Table 1. In
addition to including the frame length
information, it has been proposed to
increase the size of the optional CRC
checksum from 16 bit to 32 bit. Whether a
32 bit CRC is supported by both client and
server or not has to be negotiated in the
SDO block download or upload initiate
protocol. As the currently available bit flags
only allow the negation of using CRC
verification or not, one of the reserved bits
3 or 4 in the initiate protocol is used. Here
the client would indicate the CRC type it
intends to use and the server would
confirm if it supports the requested CRC
type.
Finally, to indicate that the entire content
of a complex object shall be transmitted a
flag ms is introduced to inform the server
which access mode is selected.
Current SDO implementation will not
interpret the additional information and fall
back to the functionality specified in [3].

Figure 12: Proposed enhanced protocol
SDO block download initiate

ss
1 .. 0

m

sc
2

scs = 5
7 .. 5

x
4 .. 3

0 1 3 4

blocksize

reserved

5 7

x
4 .. 3

ccs = 6
7 .. 5

cc
2

s
1

cs
0

m

size

0 1 3 4 7

ccs Client command specifier
scs Server command specifier
cc Client CRC support
s Size indicator
cs Client subcommand
ss Server subcommand
m Multiplexor, index and sub-index
blocksize Number of segments per block with

0 < blocksize < 128
x Not used, always 0

c
7

sequence number
6 .. 0

segment data

0 1 7

scs
7 .. 5

x
4 .. 2

ss = 2
1 .. 0

ack
seq

block
size

reserved

0

1 2 3 7

ms Multiple sub-indices selected, the server
confirms if the functionality is supported

cct Client CRC type, only valid if cc = 1
 0 16 bit CRC
 1 32 bit CRC
sct Server CRC type, if unequal to cct, the

request CRC type is not supported
mfl Maximum supported frame length

ms
4

ccs = 6
7 .. 5

cc
2

s
1

cs
0

m

size

0 1 3 4 7

cct
3

m

sc
2

scs = 5
7 .. 5

ms
4

sct
3

ss
1 .. 0

0 1 3 4

blocksize

reserved

6 7 5

mfl

iCC 2013 CAN in Automation

08-15

Figure 13: Protocol SDO block download
sub-block with increased payload of up to
(mfl - 1) byte
If the enhanced normal (segmented) SDO
protocol or the enhanced SDO block
transfer or both are introduced into the
CANopen version 5.0 is currently under
discussion within the CiA working group.

Multiple Object Access

SIG application layer has not yet started
detailed discussion on how to support a
service similar to the Complete Access
mode available for example with CANopen
over EtherCAT. In CANopen we have to
consider that entries in a complex object
may have different length, or that the
length of the entries is not initially known.
Also, it is not always the case that all sub-
indices up to the highest supported sub-
index are implemented by a device. This
makes it inherently difficult to implement
such a service, independently of such a
service being used on classic CAN or
CAN FD.
One possible solution would be to use an
object format similar to the concise DCF
format described in [4] which includes
index, sub-index, object length, and object
value in a binary data stream.
The design goals should be to avoid a
complex initialization phase for the upload
or download of structured objects and to
render the service compatible with the
SDO protocols discussed earlier in this
paper.

CAN FD with other CANopen Services

As pointed out earlier, CAN FD will most
likely affect only the PDO and SDO
services specified in [3]. Below we
enhance the table presented in [2] giving a

short summary of the impact of CAN FD
on other CANopen services:
Table 3: Impact of CAN FD on CANopen
services

Service Payload Speed
SYNC no no
TIME no no
NMT node control no no
NMT error control no no
EMCY to be

discussed
marginal

LSS possibly for
LSS fastscan

not yet
evaluated

Apart from the LSS protocols, which need
to be discussed within the SIG application
layer task force LSS and a possible
payload extension of the emergency
message, it is not expected that CAN FD
will result in a redefinition of the currently
specified services and protocols listed in
Table 3.

CANopen Device Profiles and CAN FD

The most significant impact that CAN FD
will have on device and application profiles
is the possibility to configure PDOs with
more than the traditional 8 data bytes.
Apart from the increased payload, this will
also result in a more efficient allocation of
the CAN identifiers. In the default PDO
mapping specified in CiA 401 [7], we
require 4 CAN-IDs per transmission
direction to transmit 64 digital and 12
analog channels. With CAN FD only 2
CAN-IDs will be required as the 12 analog
channels could be mapped into one PDO.
CiA 402 defines different operation modes
for drives and their corresponding PDO
mappings. In the current specification [8]
which is based on the maximum CAN
payload of 8 bytes, each PDO contains
either a control or a status word –
depending on the transmission direction –
and an operation mode specific application
parameter. With the increased payload of
CAN FD frames, multiple application
parameters, such as control word,
operation mode, target position, and target
velocity, could be transmitted with one
data frame, thus simplifying the operation
of drives.

c
7

sequence number
6 .. 0

segment data

0 1 mfl

scs
7 .. 5

x
4 .. 2

ss = 2
1 .. 0

ack
seq

block
size

reserved

0

1 2 3 7

iCC 2013 CAN in Automation

08-16

As discussed earlier in the section on
PDOs, the SIGs responsible for the device
and application profiles should consider
the necessity for application parameters
data types with a length that is not an
integer multiple of one full byte.

Conclusion

The technical work on an update of CiA
301 to support the enhanced functionality
of CAN FD has started in June 2013.
Whereas the initial discussions focused on
the clarification of the CANopen
communication FSAs, the actual work
related to CAN FD begun in August 2013.
At the time this paper was compiled, the
working group has discussed PDO and
SDO services for CAN FD. PDO services
will likely not require any changes. For
SDO services different proposals have
been presented. A final decision which of
these proposals will enter the final version
of the new CiA 301 specification is
expected for the end of 2013. The working
group also concludes that no changes are
required for the other services and
protocols specified in [3].
A discussion if the enhanced payload of
CAN FD can be utilized in the CANopen
Safety specification [15] is outside the
scope of the current work of the SIG
application layer and needs to be
addressed in a dedicated working group.

Acknowledgements

The author likes to thank the CiA office,
the members of the SIG application layer,
and the IXXAT CANopen group for the
collaboration and the discussions that
resulted in the proposals presented in this
paper.

Dr. Martin Merkel
Ixxat Automation GmbH
Leibnizstraße 15
DE-88250 Weingarten
merkel@ixxat.de
http://www.ixxat.de/

References
[1] CAN in Automation, Florian Hartwich,

Robert Bosch GmbH, CAN with Flexible
Data-Rate, Proceedings of the 13th
international CAN Conference

[2] CAN in Automation, Heinz-Jürgen Oertel,
Using CAN with flexible data-rate in
CANopen systems, Proceedings of the
13th international CAN Conference

[3] CiA 301, CANopen application layer and
communication profile, Version 4.2.0
including Corrigendum 3

[4] CiA 302, CANopen additional application
layer functions – Part 3: Configuration and
program download, Version 4.1.0

[5] CiA 302, CANopen additional application
layer functions – Part 7: Multi-level
networking, Version 1.0.0

[6] CiA 305, CANopen layer setting services
(LSS) and protocols, Version 3.0.0

[7] CiA 401, CANopen profile for I/O devices
– Part 1: Generic I/O modules, Version
3.1.0

[8] CiA 402, CANopen drives and motion
control device profile – Part 3: PDO
mapping, Version 3.0

[9] CiA 404, CANopen device profile for
measuring devices and closed-loop
controllers – Part 1: Generic objects and
generic PDO mapping, Version 2.0.0

[10] CiA 413, CANopen device profile for truck
gateways – Part 1: General definitions,
Version 3.0.0

[11] CiA 413, CANopen device profile for truck
gateways – Part 2: Brake and running
gear devices, Version 3.0.0

[12] CiA 413, CANopen device profile for truck
gateways – Part 3: Other than brake and
running gear devices, Version 3.0.0

[13] CiA 413, CANopen device profile for truck
gateways – Part 5: Superstructure
objects, Version 1.0.9

[14] CiA 850 Recommended Practice CiA 413
based truck gateway, Version 1.0.0

[15] EN 50325–5:2010 Industrial
communications subsystem based on ISO
11898 (CAN) for controller-device
interfaces - Part 5: Functional safety
communication based on EN 50325-4

