
iCC 2015 CAN in Automation

04-1

Preventing bit stuffing in CAN

Gianluca Cena, Ivan Cibrario Bertolotti, Tingting Hu, and Adriano Valenzano, CNR-IEIIT

Some of the drawbacks of CAN depend on bit stuffing. Stuff bits worsen both timing
accuracy, because of jitters on transmission times, and data integrity, due to undesired
interactions with CRC calculation. The Zero Stuff-bit (ZS) mechanism operates on
conventional CAN controllers and prevents stuff bits completely all over the frame
by suitably encoding the data field. ZS has been experimentally proven to decrease
worst-case transmission jitters from more than 20µs to less than 0.5µs at a bit rate
of 1Mb/s. It also achieves a reduction in the residual error probability of about two
orders of magnitude, and ensures full coexistence with conventional CAN devices and
applications. An industrial-grade ZS codec has been developed for embedded platforms,
whose footprint is about 2.5KB only. Its contribution to end-to-end delays is below 12µs.
This confirms that ZS can be adopted as an interim software solution to ease migration
from CAN to CAN FD.

The signal on the bus in Controller Area
Networks (CAN) [1] is encoded using a
method known as bit stuffing (BS). While
being quite efficient on the average, BS
suffers from two main drawbacks. First, the
actual duration of each message depends
on the specific content of the data field, and
not only on the nominal payload size. In
turn, this causes jitter on message
reception—in theory, up to 24 bit times
for base frames—which worsens timing
accuracy and, possibly, control quality.
Second, as pointed out in [2], BS may
interfere severely with the error detection
mechanism of CAN, which is based on
the Cyclic Redundancy Check (CRC). In
particular, a pair of erroneous bits may trick
receivers into believing that the frame is still
valid. This implies that the residual error
probability is noticeably higher than one
may expect, hence impairing integrity of
communications and consequently system
reliability.
The first issue was tackled by the
introduction of TTCAN [3]. By decoupling
frame reception times from actuation
and sensing instants—thanks to the
time-triggered paradigm—jitters at the
application level are avoided at the expense
of increased software complexity. The
second issue, instead, is dealt with by CAN
FD [4]. In this protocol the CRC is calculated
on the whole frame (including stuff bits as
well) and encoded with stuff bits placed in

fixed positions. Thanks (also) to its much
higher speed, there is little doubt that
CAN FD will eventually succeed to replace
CAN completely.
Both solutions preserve a reasonable
degree of backward compatibility with
“legacy” CAN. However, a new breed of
CAN controllers is required, which means
that the existing ones are unsuitable.
Much worse, their advantages cannot be
exploited in networks where nodes based
on conventional controllers are present. In
the case of CAN FD, severe error conditions
may arise when trying to do so. For these
reasons, a solution is welcome that is able
to run on unmodified legacy CAN hardware
and coexist with existing devices and
applications, yet permitting to overcome the
drawbacks of CAN due to BS highlighted
above.
To this extent, the Zero Stuff-bit (ZS)
encoding scheme can be adopted. It acts as
a presentation layer and is located between
the data-link layer and either the application
layer (e.g., CANopen) or applications
programs directly. From a practical
viewpoint, this corresponds to a codec,
which can be implemented as a thin software
layer running on the same microcontroller in
charge of executing application programs.
The paper is organized as follows: the next
section briefly describes the techniques that
can be used to prevent stuff bit insertion
in CAN, while the ZS encoding scheme is

iCC 2015 CAN in Automation

04-2

specifically described afterwards. Finally,
the last sections describe in detail the ZS
codec and its performance, and draw some
conclusions.

Bit stuffing in CAN

As shown in Figure 1 (which refers to the
base frame format), each CAN frame can be
seen as made up of four distinct sections:
	 •	 Header (H): comprises the Start of

Frame (SOF) bit, the arbitration field—
including the identifier and the Remote
Transmission Request (RTR) bit—and
the control field—made up of reserved
bits and the Data Length Code (DLC).

	 •	 Data field (D): carries user information
as seen by the upper protocol layers
(referred to in the following as the
original payload (P)). This field is not
interpreted by the CAN controller
and is completely under control of the
applications. The final content of D is
obtained by encoding P suitably.

	 •	 CRC field (R): represents a signature,
evaluated by the transmitter on all the
preceding fields of the frame and used by
receivers to detect transmission errors.
Its content is calculated at runtime by
the CAN controller, and hence, it cannot
be modified directly by applications.

	 •	 Unstuffed trailer (U): includes the
CRC delimiter, the ACK slot, the ACK
delimiter, and the End of Frame (EOF)
field. This section, located at the very
end of the frame, is not encoded with
BS. Hence, it is not a source of jitter.

Overall, a CAN frame (F) can be seen as
	 F = H \ D \ R \ U
where the “\” operator denotes concatenation
between sections or bit sequences.
At the physical level, the signal transmitted
on the CAN bus relies on a non-return to
zero (NRZ) encoding with bit stuffing.

Figure 1: CAN and ZS frame format

Every time 5 consecutive bits at the same
level are found in the bit sequence sent on
the bus, the CAN controller in the transmitting
device(s) automatically inserts a stuff bit at
the opposite value. Stuff bits enable a proper
synchronization of CAN controllers in receivers,
which is essential for decoding the signal read
from the bus correctly. They are removed by
the controller while the frame is being received.
As said above, only the frame stuffed prefix (S
in Figure 1) is involved in BS. For this reason,
the trailer is irrelevant to our purposes and will
not be considered in the following.
Different approaches have to be adopted to
deal with stuff bits in different sections of the
frame, as explained below.

Frame header

As shown in [5] a careful selection of message
identifiers can prevent stuff bits in the frame
header completely. However, it is worth
noting that, in the vast majority of real-world
applications, the header is fixed for any given
message stream. As a consequence, at worst
it introduces a fixed number of stuff bits (up to 4
in base frames), which do not cause any jitter.
Concerning data integrity, in order to prevent
the issues highlighted in [2], strictly speaking
there must be no stuff bits in the header.
Nonetheless, reducing the number of stuff
bits in the header as much as possible, and
preventing them in the other parts of the frame,
reduces the probability of such an occurrence.

Data field

The data field in CAN frames is under complete
control of the user. For this reason, specific
encoding schemes can be purposely adopted
for the payload in order to avoid the insertion of
stuff bits in D.
Former approaches [5] operated by scrambling
P before copying it into D. For instance, P can
be XOR-ed with a fixed pattern made up of an
alternating bit sequence. As shown in [6], when
process data encode patterns with specific
generation laws, doing so permits to reduce
the average number of stuff bits.
Conversely, more recent solutions like 8B9B
[7] are able to prevent the insertion of stuff
bits in D completely, by exploiting block codes
where each byte of the payload is encoded
separately.

AD
EL

 Trailer (U)
Res
(2b)

DATA
(0 – 8B) SO

F

CD
EL

AC

K ID+RTR
(11+1b)

CRC
(15b)

DLC
(4b)

EOF
(7b)

C1
(9b) … B

T
(3b)

Part of frame subject to bit stuffing (S)

Cm+1
(<8b)

C2
(9b)

Cm
(9b)

ZSD - VHCC encoding (E) ZSC

Header (H) Data (D) Chk. (R)

iCC 2015 CAN in Automation

04-3

8B9B belongs to the class of the Zero Stuff-
bit Data (ZSD) encoding schemes, and in
particular to ZSD2, where no more than 2 bits
at the same level can be found at the end of
the encoded payload. Codewords are 9 bit
long and permit to encode every possible
value expressed on one byte. Each codeword
satisfies two properties:
P1.	 No more than 4 consecutive bits at the
	 same value can be found everywhere;
P2.	 No more than 2 consecutive bits at the
	 same value can be found at both ends.
It is easy to show that properties P1 and P2
also hold for every bit sequence obtained by
concatenating two or more codewords. Hence,
the conditions that trigger stuff bit insertion
in the encoded payload are prevented in
advance.
The ZS encoding scheme described below
relies on the Variable-length, High-performance
Code for CAN (VHCC) [8]. Basically, VHCC
resembles 8B9B closely (that is, it is ZSD2), but
relies on a different codebook, which satisfies
a nesting property that enables variable-length
data encoding.
As proven in [8], both VHCC and 8B9B offer
the best communication efficiency that can
be obtained in practical implementations. In
addition, VHCC permits to reuse the same
lookup tables in the codec in order to perform
sub-byte encoding and decoding. Doing so
enables applications to exploit every available
bit in D to transfer user information.

CRC field

Dealing with stuff bits in the CRC is not easy,
as this field is managed completely inside CAN
controllers. In the following, CRC calculation
according to the CAN rules is modeled as a
function c(·)
	 R = c(M)
where the message M coincides with the part
of the frame covered by the CRC (from the
SOF bit up to the end of D)
	 M = H \ D
Up to 4 stuff bits may be added to R (depending
on M), which cause jitter and worsen reliability.
The value of R can be “shaped” by using a
small portion of D, denoted tuning string (T).
As proven in [9], reserving 4 bits for T (at the
end of D) is sufficient so that the computation
of R can be always steered to a value that
does not include any stuff bits.

In the case the payload is encoded using
ZSD2, 3 bits will suffice. This mechanism is
known as Zero Stuff-bit CRC1 (ZSC).
Since part of D is reserved to store T, the
remaining portion, available to encode user
information and referred to as effective data
field (E), is slightly smaller. Overall, D can be
seen as
	 D = E \ T

Zero stuff-bit encoding schemes

In the following, a brief description is provided
about the encoding schemes that are used in
ZS to prevent stuff bits in the data and CRC
fields. Concerning the header, please refer
directly to [5]. All the techniques described
there are compatible with the ZS scheme and
can be used in concert with it.

VHCC

The behavior of VHCC is quite simple. Let
Pi be the i-th byte of the original payload P
(1 ≤ i ≤ m, where m is the original payload
size). Frames with no payload (m = 0) will
not be considered, as the related sequence
of bits sent on the bus is fixed. Additional
sub-byte user information, encoded on h bits
(1 ≤ h ≤ 7), can be possibly present in Pm+1,
so that

P = P1 \ P2 \ … \ Pi \ … \ Pm \ Pm+1

First, every whole byte Pi (1 ≤ i ≤ m) is encoded
separately into a codeword Ci using a forward
lookup table (FLT), modeled as a function f(·)

Ci = f(Pi)

Such codewords are then concatenated in
the same order as P

C<1...m> = C1 \ C2 \ … \ Ci \ … \ Cm

Since the size of C<1...m> is typically smaller
than E, part of the last byte in D (between Cm
and T) becomes a slack space (K). Let k be
its size (in bits).
In 8B9B, all the bits that followed Cm and
preceded R remained unused and were filled
with a fixed padding sequence (PAD).

1 Patent pending

iCC 2015 CAN in Automation

04-4

Instead, in the current advanced ZS
code, they can be used to encode Pm+1. In
particular, the slack bears an additional
(smaller) codeword Cm+1, which is derived
from a reduced codebook as

Cm+1 = fk(Pm+1)
where fk(·) shares the same FLT and
implementation as f(·). From a general point
of view, the maximum number of bits allowed
for additional user data is one less than the
slack size, i.e., max(h) = k-1. For instance,
up to 4 bits of Pm+1 can be encoded when 5
bits are allotted to Cm+1.
If K includes only one bit (k = 1), then no
additional data can be included (h = 0) and
Cm+1 has to be set to the opposite value of
the least significant bit in Cm. If h < k-1 then
Pm+1 has to be left padded to k-1 bits with
zeroes. In the case Pm+1 is not present, any
value can be used in its place, since the
padding produced by fk(·) always prevents
BS. Overall, the concatenation of codewords
(C) is

C = C<1...m> \ Cm+1
In order to prevent the occurrence of a stuff
bit on the boundary between H and D, a
break bit (B) is possibly added as the first bit
of D, evaluated by complementing the least
significant bit of DLC. B is only required when
DLC equals 3, 7, or 8, whereas it is omitted
otherwise. The encoded payload is obtained
by concatenating B and all the codewords

E = B \ C
Since the payload encoded this way fits
exactly the entire effective data field, the
same symbol E will be used in the following
to denote both.
Generally speaking, every ZSD2 encoding
scheme can be modeled as a function e(·)
that, starting from the payload P and the
header H, returns the effective data field

E = e(H, P)
ZSC

ZSC exploits the tuning field, located at the
end of D, in order to prevent the insertion
of stuff bits in R completely. As proven in
[9], and because of the linearity of CRC
codes, it is always possible to select a value
for T in the set {0012, 0102, 0112, 1002,
1012, 1102}, which includes only six
Ti values, so that the above condition
holds for any given header and
payload.

Calculation of T is not completely trivial, and
can be modeled as a function z(·)

T = z(H, E)
A possible way to do so is as follows: first,
the part of frame that precedes T, called the
leading part (L) of the message

L = H \ E
is considered, and its contribution to the
overall CRC evaluated

RL = c(L \ 0002)
Then, the contribution to R due to T is
evaluated and XOR-ed with RL for any
possible value of Ti mentioned above, in order
to find the related CRC value Ri.
Let Mi be the message obtained by setting T
= Ti

Mi = L \ Ti
It can be easily proven that

Ri = c(Mi) = RL O+ c(Ti), i = 1…6
where “O+ ” represents the exclusive OR
operator.
Let g(·) be a Boolean function that is true if
(and only if) a given bit sequence includes
more than 4 consecutive bits at the same
value (i.e., if it would lead to stuff bits). Every
value Ti such that

g(Ti \ Ri) = false
can be used as the outcome of z(·). From
[9] we know that there is at least one. In
the case there is more than one acceptable
value, the choice of which to select is
arbitrary. Performing an exhaustive search
and selecting the one with the highest value
of i helps reducing the codec jitter in software
implementations.

Putting all together

The whole ZS procedure can be described
as follows. First, the encoded payload is
evaluated as E = e(H, P). Then, the tuning
string is obtained as T = z(H, E). Finally,
the outcomes of VHCC and ZSC (E and T,
respectively) are put together: the value to
be used for the data field is evaluated as
D = E \ T. The way H and D are fed to the
CAN controller is completely irrelevant to our
purposes. When operating this way, no stuff
bits will ever be added to the data and CRC
fields by the CAN controller, as proven in [9].
Although ZS has very good encoding
efficiency, it necessarily introduces overheads,
which reduce the amount of information that
can be conveyed in CAN frames.

iCC 2015 CAN in Automation

04-5

In Table 1, the maximum amount of user
information that fit into a single frame is
reported for every possible frame size
(DLC).
It has been calculated starting from the size
of D (listed in the two leftmost columns of
the table), subtracting the space reserved
to T (3 bits) and B (if needed), and then
considering the VHCC encoding overhead
of 1 bit for each codeword.
The result (that is, the size of P) is specified
in the rightmost column of the table as m.h,
where m represents the number of whole
bytes (P1 to Pm) whereas h is the number
of additional bits (in Pm+1). As can be seen,
up to 6 bytes plus 5 bits can be carried in a
CAN frame with maximal size (DLC = 8).

Table 1: Maximum payload size in ZS

Implementation and performance

The primary goal of ZS is to make the duration
of frame transfers in CAN deterministic,
hence removing any transmission jitter due
to BS. To this extent, it has to be remarked
that hardware implementations of ZS (e.g.,
based on FPGAs) are able to reduce this
jitter to zero.
Moreover, a very interesting side effect
of stuff bit removal is that data integrity
improves noticeably, because the interaction
between BS and CRC calculation no longer
takes place.
As shown in [10], the residual error probability
decreases by about two orders of magnitude
when a ZSD codec like 8B9B is used alone.
The addition of the ZSC mechanism in
ZS is likely to improve reliability further,
because stuff bits are removed from the
CRC field as well. Unlike nested CRCs, ZS
has the advantage of improving both timing
accuracy and data integrity at the same

time. Research activities on these aspects are
in progress.
It is worth noting that not necessarily all
messages exchanged on the CAN bus must
undergo ZS encoding. On the contrary, it can
be enabled selectively (depending on the
message identifier) uniquely for those data
that require high reliability and low jitter. Only
nodes that exchange ZS-encoded messages
are required to implement the related codec.
Moreover, ZSC is necessary only on the
transmitting side: receivers only have to strip
the tuning string away. In this way, system
implementation complexity and cost decrease,
and seamless coexistence with existing CAN
devices and applications is ensured.

ZS codec

The ZS method can be implemented efficiently
through software codecs. As discussed in the
previous sections, from the conceptual point
of view, ZS encoding is performed in two
steps:
	 1.	 Payload encoding, according to
		 VHCC;
	 2.	 Generation of T, according to ZSC.
Given that the same approach has been
adopted in its practical implementation, we
can consider that ZS encoding time is the
sum of the times spent in the two steps listed
above.
In the decoding process, T is simply discarded
before forwarding E to VHCC decoding. Given
that discarding T can be done in negligible time
on any modern microcontroller, we can safely
assume that ZS decoding time as a whole
is equal to VHCC decoding time. The same
reasoning also applies to memory footprint.
Considering ZS encoding first, experimental
results about VHCC encoding performance
and memory footprint on an NXP LPC1768
microcontroller [11] running at 100MHz, are
available in [8] and are shown in the top rows
of Tables 2 and 3, respectively. For what
concerns performance, the table lists the
worst-case encoding delay, that is, the one
corresponding to the maximum size of D (and
to a size of P equal to 6.5), as well as the
corresponding computation jitter.
Regarding footprint, separate figures are
given for read-only and read/write memory,
a distinction often important in embedded
systems.

iCC 2015 CAN in Automation

04-6

Moreover, separate values have been given
for code and data, the latter consisting of
the lookup tables used by the various code
modules. Stack space has been accounted
for as read/write memory.
The ZSC algorithm has instead been
implemented (in combination with the 8B9B
payload encoding scheme) on an NXP
LPC2468 microcontroller [12] running at
72MHz and then evaluated in [9]. As before,
performance and footprint data are shown
in the center rows of Tables 2 and 3 even
though, in this case, they must be considered
as a conservative approximation of ZSC
encoding properties on the LPC1768.
This is because, besides the raw difference
in clock speed already mentioned above, the
two platforms support different instruction sets
and are based on different processor cores,
too. More specifically, the LPC2468 is a low
end component based on an ARM7TDMI S
core designed in 2001. Instead, the LPC1768
is based on the contemporary Cortex-M3
processor core with a better instruction/cycle
ratio, due to architectural enhancements.
The improvement may be quantified by
examining the experimental results reported
in [7], where the 8B9B codec was evaluated
on both platforms. In that case, performance
was on average about 35% better and
code footprint was about 30% lower on
the LPC1768 with respect to the LPC2468.
Clearly, using one architecture or the other
could not bring any improvement to table
sizes.
Concerning table sizes, it is also worth to
remark that the relatively large size of the
ZSC table with respect to the others is due to
the fact that, in order to generate T properly,
the ZSC algorithm needs to calculate L’s
contribution to the CRC RL. When this
operation is performed on a byte-by-byte
basis, it requires a lookup table of 28=256
15-bit entries, that is, 512 bytes as indicated
in Table 3.
As mentioned above, it is possible to
accurately approximate ZS decoder footprint
and the corresponding delay by considering
only the VHCC decoder contribution [8],
shown in the bottom rows of Tables 2 and 3.
Summarizing the results, ZS encoding and
decoding as a whole can be performed by
introducing less that 12µs of delay in the
communication path.

Even more importantly, software processing
introduces a negligible amount of jitter,
less than 0.5µs. Hence, it does not go
against one of the goals of ZS itself, that
is, jitter reduction. Indeed, the remaining
communication jitter is bit-rate independent
and well below one bit time, even at the
maximum CAN bit rate of 1Mbit/s.
Furthermore, as pointed out in [9], a low-
jitter version of the ZS encoder was also
developed, which trades off at most 1.49µs
of extra delay to reduce jitter below 30ns.
It is also possible to get an estimate of
the actual delay and footprint of the ZS
encoder, when it is completely implemented
on the LPC1768, by applying the
LPC2468→LPC1768 improvement factors
mentioned above.
The predicted worst-case delay turns out
to be 10.15µs, while the predicted footprint
is 2193B. However, due to the inherent
uncertainty of the method (applying a
footprint and performance improvement
factor derived from analyzing a certain code
module to another), these numbers shall be
taken as an estimate and will be the subject
of further experimental evaluation in a future
work.

Table 2: ZS codec performance

Table 3: ZS memory footprint

iCC 2015 CAN in Automation

04-7

Summary

CAN FD brings noticeable improvements over
CAN, which include much higher throughput
and better data integrity. Unfortunately, its
advantages cannot be easily exploited in
networks to which nodes based on legacy
controllers are attached.
In this paper, an encoding scheme is
described, referred to as Zero Stuff-bit (ZS),
which permits to prevent the insertion of stuff
bits completely in frames sent by conventional
CAN controllers. As a consequence, it
completely eliminates the related transmission
jitter and noticeably reduces the residual error
probability.
A portable, highly optimized industrial-grade
ZS codec for typical embedded platforms
has been developed in our Institute, mainly
considering the NXP LPC1768 [11] and
LPC2468 [12] microcontrollers as a case study.
It has been thoroughly tested in order to prove
feasibility, correctness, and performance of
our solution [9]. While ZS does not improve
throughput, it successfully addresses both
jitter and data integrity issues that affect
conventional CAN communications. For this
reason, we believe that ZS can be adopted as
an interim software solution to ease migration
from CAN to CAN FD.

Gianluca Cena
CNR-IEIIT
C.so Duca degli Abruzzi, 24
IT-10129 Torino
Tel./Fax +39 011 090 5424/5429
gianluca.cena@polito.it
http://ceng.ieiit.cnr.it/gc

Ivan Cibrario Bertolotti
CNR-IEIIT
C.so Duca degli Abruzzi, 24
IT-10129 Torino
Tel./Fax +39 011 090 5426/5429
ivan.cibrario@polito.it
http://ceng.ieiit.cnr.it/icb

Tingting Hu
CNR-IEIIT
C.so Duca degli Abruzzi, 24
IT-10129 Torino
Tel./Fax +39 011 090 5432/5429
tingting.hu@polito.it
http://ceng.ieiit.cnr.it/people/tingting.hu/

Adriano Valenzano
CNR-IEIIT
C.so Duca degli Abruzzi, 24
10129 Torino - Italy
Tel./ Fax +39 011 090 5410/5429
adriano.valenzano@polito.it
http://ceng.ieiit.cnr.it/av

References
[1]	 ISO 11898-1: Road vehicles – Controller area

net¬work – Part 1: Data link layer and physical
signal¬ling (International Organization for
Standardization, 2003).

[2]	 J. Charzinski: Performance of the error
detection mechanisms in CAN (in: Proc. iCC
1994, pp. 20–29).

[3]	 ISO 11898-4 – Road vehicles – Controller
area network – Part 4: Time-triggered
communication, (International Organization
for Standardization, 2004).

[4]	 ISO/DIS 11898-1: Road vehicles – Controller
area net¬work – Part 1: Data link layer
and physical signal¬ling (International
Organization for Standardization, 2015).

[5]	 T. Nolte, H. Hansson, C. Norström, S.
Punnekkat: Using bit-stuffing distributions in
CAN analysis (in: Proc. IEEE/IEE Real-Time
Embedded Systems Workshop, 2001).

[6]	 G. Cena, I. Cibrario Bertolotti, T. Hu, A.
Valenzano: Performance comparison of
mechanisms to reduce bit stuffing jitters in
Controller Area Networks (in: Proc. IEEE
ETFA 2012, pp. 1–8).

[7]	 G. Cena, I. Cibrario Bertolotti, T. Hu, A.
Valenzano: Fixed-Length Payload Encoding
for Low-Jitter Controller Area Network
Communication (in: IEEE Trans. Ind.
Informat., vol. 9, no. 4, pp. 2155–2164, 2013).

[8]	 G. Cena, I. Cibrario Bertolotti, T. Hu, A.
Valenzano: On a family of run length limited,
block decodable codes to prevent payload-
induced jitter in Controller Area Networks (in:
Comput. Stand. Interfaces, vol. 35, no. 5, pp.
536–548, 2013).

[9]	 G. Cena, I. Cibrario Bertolotti, T. Hu, A.
Valenzano: A mechanism to prevent stuff bits
in CAN for achieving jitterless communication
(in: IEEE Trans. Ind. Informat., vol. 11, no. 1,
pp. 83–93, Feb. 2015).

[10]	G. Cena, I. Cibrario Bertolotti, T. Hu, A.
Valenzano: Effect of jitter-reducing encoders
on CAN error detection mechanisms (in:
Proc. IEEE WFCS 2014, pp. 1–10).

[11]	 LPC17XX User manual, UM10360 rev. 2,
(NXP B.V., Aug. 2010).

[12]	LPC24XX User manual, UM10237 rev. 2,
(NXP B.V., Dec. 2008).

