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Preventing bit stuffing in CAN

Gianluca Cena, Ivan Cibrario Bertolotti, Tingting Hu, and Adriano Valenzano, CNR-IEIIT

Some of the drawbacks of CAN depend on bit stuffing. Stuff bits worsen both timing 
accuracy, because of jitters on transmission times, and data integrity, due to undesired 
interactions with CRC calculation. The Zero Stuff-bit (ZS) mechanism operates on 
conventional CAN controllers and prevents stuff bits completely all over the frame 
by suitably encoding the data field. ZS has been experimentally proven to decrease 
worst-case transmission jitters from more than 20µs to less than 0.5µs at a bit rate 
of 1Mb/s. It also achieves a reduction in the residual error probability of about two 
orders of magnitude, and ensures full coexistence with conventional CAN devices and 
applications. An industrial-grade ZS codec has been developed for embedded platforms, 
whose footprint is about 2.5KB only. Its contribution to end-to-end delays is below 12µs. 
This confirms that ZS can be adopted as an interim software solution to ease migration 
from CAN to CAN FD.

The signal on the bus in Controller Area 
Networks (CAN) [1] is encoded using a 
method known as bit stuffing (BS). While 
being quite efficient on the average, BS 
suffers from two main drawbacks. First, the 
actual duration of each message depends 
on the specific content of the data field, and 
not only on the nominal payload size. In  
turn, this causes jitter on message 
reception—in theory, up to 24 bit times 
for base frames—which worsens timing 
accuracy and, possibly, control quality. 
Second, as pointed out in [2], BS may 
interfere severely with the error detection 
mechanism of CAN, which is based on 
the Cyclic Redundancy Check (CRC). In 
particular, a pair of erroneous bits may trick 
receivers into believing that the frame is still 
valid. This implies that the residual error 
probability is noticeably higher than one 
may expect, hence impairing integrity of 
communications and consequently system 
reliability.
The first issue was tackled by the  
introduction of TTCAN [3]. By decoupling 
frame reception times from actuation 
and sensing instants—thanks to the 
time-triggered paradigm—jitters at the 
application level are avoided at the expense 
of increased software complexity. The 
second issue, instead, is dealt with by CAN 
FD [4]. In this protocol the CRC is calculated 
on the whole frame (including stuff bits as 
well) and encoded with stuff bits placed in 

fixed positions. Thanks (also) to its much 
higher speed, there is little doubt that  
CAN FD will eventually succeed to replace 
CAN completely.
Both solutions preserve a reasonable 
degree of backward compatibility with 
“legacy” CAN. However, a new breed of 
CAN controllers is required, which means 
that the existing ones are unsuitable. 
Much worse, their advantages cannot be 
exploited in networks where nodes based 
on conventional controllers are present. In 
the case of CAN FD, severe error conditions 
may arise when trying to do so. For these 
reasons, a solution is welcome that is able 
to run on unmodified legacy CAN hardware 
and coexist with existing devices and 
applications, yet permitting to overcome the 
drawbacks of CAN due to BS highlighted 
above. 
To this extent, the Zero Stuff-bit (ZS) 
encoding scheme can be adopted. It acts as 
a presentation layer and is located between 
the data-link layer and either the application 
layer (e.g., CANopen) or applications 
programs directly. From a practical 
viewpoint, this corresponds to a codec, 
which can be implemented as a thin software 
layer running on the same microcontroller in 
charge of executing application programs.
The paper is organized as follows: the next 
section briefly describes the techniques that 
can be used to prevent stuff bit insertion 
in CAN, while the ZS encoding scheme is 
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specifically described afterwards. Finally, 
the last sections describe in detail the ZS 
codec and its performance, and draw some 
conclusions.

Bit stuffing in CAN

As shown in Figure 1 (which refers to the 
base frame format), each CAN frame can be 
seen as made up of four distinct sections:
	 •	 Header (H): comprises the Start of 

Frame (SOF) bit, the arbitration field— 
including the identifier and the Remote 
Transmission Request (RTR) bit—and 
the control field—made up of reserved 
bits and the Data Length Code (DLC).

	 •	 Data field (D): carries user information 
as seen by the upper protocol layers 
(referred to in the following as the 
original payload (P)). This field is not 
interpreted by the CAN controller 
and is completely under control of the 
applications. The final content of D is 
obtained by encoding P suitably.

	 •	 CRC field (R): represents a signature, 
evaluated by the transmitter on all the 
preceding fields of the frame and used by 
receivers to detect transmission errors. 
Its content is calculated at runtime by 
the CAN controller, and hence, it cannot 
be modified directly by applications.

	 •	 Unstuffed trailer (U): includes the 
CRC delimiter, the ACK slot, the ACK 
delimiter, and the End of Frame (EOF) 
field. This section, located at the very 
end of the frame, is not encoded with 
BS. Hence, it is not a source of jitter.

Overall, a CAN frame (F) can be seen as
	 F = H \ D \ R \ U
where the “\” operator denotes concatenation 
between sections or bit sequences.
At the physical level, the signal transmitted 
on the CAN bus relies on a non-return to 
zero (NRZ) encoding with bit stuffing.

 
Figure 1: CAN and ZS frame format

Every time 5 consecutive bits at the same 
level are found in the bit sequence sent on 
the bus, the CAN controller in the transmitting 
device(s) automatically inserts a stuff bit at 
the opposite value. Stuff bits enable a proper 
synchronization of CAN controllers in receivers, 
which is essential for decoding the signal read 
from the bus correctly. They are removed by 
the controller while the frame is being received. 
As said above, only the frame stuffed prefix (S 
in Figure 1) is involved in BS. For this reason, 
the trailer is irrelevant to our purposes and will 
not be considered in the following.
Different approaches have to be adopted to 
deal with stuff bits in different sections of the 
frame, as explained below.

Frame header

As shown in [5] a careful selection of message 
identifiers can prevent stuff bits in the frame 
header completely. However, it is worth 
noting that, in the vast majority of real-world 
applications, the header is fixed for any given 
message stream. As a consequence, at worst 
it introduces a fixed number of stuff bits (up to 4 
in base frames), which do not cause any jitter.
Concerning data integrity, in order to prevent 
the issues highlighted in [2], strictly speaking 
there must be no stuff bits in the header. 
Nonetheless, reducing the number of stuff 
bits in the header as much as possible, and 
preventing them in the other parts of the frame, 
reduces the probability of such an occurrence.

Data field

The data field in CAN frames is under complete 
control of the user. For this reason, specific 
encoding schemes can be purposely adopted 
for the payload in order to avoid the insertion of 
stuff bits in D. 
Former approaches [5] operated by scrambling 
P before copying it into D. For instance, P can 
be XOR-ed with a fixed pattern made up of an 
alternating bit sequence. As shown in [6], when 
process data encode patterns with specific 
generation laws, doing so permits to reduce 
the average number of stuff bits.
Conversely, more recent solutions like 8B9B 
[7] are able to prevent the insertion of stuff 
bits in D completely, by exploiting block codes 
where each byte of the payload is encoded 
separately.

 

AD
EL

 Trailer (U) 
Res 
(2b) 

DATA 
(0 – 8B) SO

F 

CD
EL

 
AC

K ID+RTR 
(11+1b) 

CRC 
(15b) 

DLC 
(4b) 

EOF 
(7b) 

C1 
(9b) … B 

T 
(3b) 

Part of frame subject to bit stuffing (S) 

Cm+1 
(<8b) 

C2 
(9b) 

Cm 
(9b) 

ZSD - VHCC encoding (E) ZSC 

Header (H) Data (D) Chk. (R) 



iCC 2015 CAN in Automation

04-3

8B9B belongs to the class of the Zero Stuff-
bit Data (ZSD) encoding schemes, and in 
particular to ZSD2, where no more than 2 bits 
at the same level can be found at the end of 
the encoded payload. Codewords are 9 bit 
long and permit to encode every possible 
value expressed on one byte. Each codeword 
satisfies two properties:
P1.	 No more than 4 consecutive bits at the  
	 same value can be found everywhere;
P2.	 No more than 2 consecutive bits at the  
	 same value can be found at both ends.
It is easy to show that properties P1 and P2 
also hold for every bit sequence obtained by 
concatenating two or more codewords. Hence, 
the conditions that trigger stuff bit insertion 
in the encoded payload are prevented in 
advance.
The ZS encoding scheme described below 
relies on the Variable-length, High-performance 
Code for CAN (VHCC) [8]. Basically, VHCC 
resembles 8B9B closely (that is, it is ZSD2), but 
relies on a different codebook, which satisfies 
a nesting property that enables variable-length 
data encoding.
As proven in [8], both VHCC and 8B9B offer 
the best communication efficiency that can 
be obtained in practical implementations. In 
addition, VHCC permits to reuse the same 
lookup tables in the codec in order to perform 
sub-byte encoding and decoding. Doing so 
enables applications to exploit every available 
bit in D to transfer user information.

CRC field

Dealing with stuff bits in the CRC is not easy, 
as this field is managed completely inside CAN 
controllers. In the following, CRC calculation 
according to the CAN rules is modeled as a 
function c(·)
	 R = c(M)
where the message M coincides with the part 
of the frame covered by the CRC (from the 
SOF bit up to the end of D)
	 M = H \ D
Up to 4 stuff bits may be added to R (depending 
on M), which cause jitter and worsen reliability.
The value of R can be “shaped” by using a 
small portion of D, denoted tuning string (T). 
As proven in [9], reserving 4 bits for T (at the 
end of D) is sufficient so that the computation 
of R can be always steered to a value that 
does not include any stuff bits. 

In the case the payload is encoded using 
ZSD2, 3 bits will suffice. This mechanism is 
known as Zero Stuff-bit CRC1  (ZSC).
Since part of D is reserved to store T, the 
remaining portion, available to encode user 
information and referred to as effective data 
field (E), is slightly smaller. Overall, D can be 
seen as
	 D = E \ T

Zero stuff-bit encoding schemes

In the following, a brief description is provided 
about the encoding schemes that are used in 
ZS to prevent stuff bits in the data and CRC 
fields. Concerning the header, please refer 
directly to [5]. All the techniques described 
there are compatible with the ZS scheme and 
can be used in concert with it.

VHCC

The behavior of VHCC is quite simple. Let 
Pi be the i-th byte of the original payload P 
(1 ≤ i ≤ m, where m is the original payload 
size). Frames with no payload (m = 0) will 
not be considered, as the related sequence 
of bits sent on the bus is fixed. Additional 
sub-byte user information, encoded on h bits  
(1 ≤ h ≤ 7), can be possibly present in Pm+1, 
so that

P = P1 \ P2 \ … \ Pi \ … \ Pm \ Pm+1

First, every whole byte Pi (1 ≤ i ≤ m) is encoded 
separately into a codeword Ci using a forward 
lookup table (FLT), modeled as a function f(·)

Ci = f(Pi)

Such codewords are then concatenated in 
the same order as P

C<1...m> = C1 \ C2 \ … \ Ci \ … \ Cm

Since the size of C<1...m> is typically smaller 
than E, part of the last byte in D (between Cm 
and T) becomes a slack space (K). Let k be 
its size (in bits). 
In 8B9B, all the bits that followed Cm and 
preceded R remained unused and were filled 
with a fixed padding sequence (PAD). 

1 Patent pending
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Instead, in the current advanced ZS 
code, they can be used to encode Pm+1. In 
particular, the slack bears an additional 
(smaller) codeword Cm+1, which is derived 
from a reduced codebook as 

Cm+1 = fk(Pm+1)
where fk(·) shares the same FLT and 
implementation as f(·). From a general point 
of view, the maximum number of bits allowed 
for additional user data is one less than the 
slack size, i.e., max(h) = k-1. For instance, 
up to 4 bits of Pm+1 can be encoded when 5 
bits are allotted to Cm+1. 
If K includes only one bit (k = 1), then no 
additional data can be included (h = 0) and 
Cm+1 has to be set to the opposite value of 
the least significant bit in Cm. If h < k-1 then 
Pm+1 has to be left padded to k-1 bits with 
zeroes. In the case Pm+1 is not present, any 
value can be used in its place, since the 
padding produced by fk(·) always prevents 
BS. Overall, the concatenation of codewords 
(C) is

C = C<1...m> \ Cm+1
In order to prevent the occurrence of a stuff 
bit on the boundary between H and D, a 
break bit (B) is possibly added as the first bit 
of D, evaluated by complementing the least 
significant bit of DLC. B is only required when 
DLC equals 3, 7, or 8, whereas it is omitted 
otherwise. The encoded payload is obtained 
by concatenating B and all the codewords

E = B \ C
Since the payload encoded this way fits 
exactly the entire effective data field, the 
same symbol E will be used in the following 
to denote both.
Generally speaking, every ZSD2 encoding 
scheme can be modeled as a function e(·) 
that, starting from the payload P and the 
header H, returns the effective data field 

E = e(H, P)
ZSC

ZSC exploits the tuning field, located at the 
end of D, in order to prevent the insertion 
of stuff bits in R completely. As proven in 
[9], and because of the linearity of CRC 
codes, it is always possible to select a value 
for T in the set {0012, 0102, 0112, 1002,  
1012, 1102}, which includes only six  
Ti values, so that the above condition  
holds for any given header and  
payload.

Calculation of T is not completely trivial, and 
can be modeled as a function z(·)

T = z(H, E)
A possible way to do so is as follows: first, 
the part of frame that precedes T, called the 
leading part (L) of the message

L = H \ E
is considered, and its contribution to the 
overall CRC evaluated

RL = c(L \ 0002)
Then, the contribution to R due to T is 
evaluated and XOR-ed with RL for any 
possible value of Ti mentioned above, in order 
to find the related CRC value Ri.
Let Mi be the message obtained by setting  T 
= Ti

Mi = L \ Ti
It can be easily proven that

Ri = c(Mi) = RL O+ c(Ti),  i = 1…6
where “O+ ” represents the exclusive OR 
operator.
Let g(·) be a Boolean function that is true if 
(and only if) a given bit sequence includes 
more than 4 consecutive bits at the same 
value (i.e., if it would lead to stuff bits). Every 
value Ti such that 

g(Ti \ Ri) = false
can be used as the outcome of z(·). From 
[9] we know that there is at least one. In 
the case there is more than one acceptable 
value, the choice of which to select is 
arbitrary. Performing an exhaustive search 
and selecting the one with the highest value 
of i helps reducing the codec jitter in software 
implementations.

Putting all together

The whole ZS procedure can be described 
as follows. First, the encoded payload is 
evaluated as E = e(H, P). Then, the tuning 
string is obtained as T = z(H, E). Finally, 
the outcomes of VHCC and ZSC (E and T, 
respectively) are put together: the value to 
be used for the data field is evaluated as  
D = E \ T. The way H and D are fed to the 
CAN controller is completely irrelevant to our 
purposes. When operating this way, no stuff 
bits will ever be added to the data and CRC 
fields by the CAN controller, as proven in [9].
Although ZS has very good encoding 
efficiency, it necessarily introduces overheads, 
which reduce the amount of information that 
can be conveyed in CAN frames. 
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In Table 1, the maximum amount of user 
information that fit into a single frame is 
reported for every possible frame size 
(DLC).
It has been calculated starting from the size 
of D (listed in the two leftmost columns of 
the table), subtracting the space reserved 
to T (3 bits) and B (if needed), and then 
considering the VHCC encoding overhead 
of 1 bit for each codeword.
The result (that is, the size of P) is specified 
in the rightmost column of the table as m.h, 
where m represents the number of whole 
bytes (P1 to Pm) whereas h is the number 
of additional bits (in Pm+1). As can be seen, 
up to 6 bytes plus 5 bits can be carried in a 
CAN frame with maximal size (DLC = 8).

Table 1: Maximum payload size in ZS

Implementation and performance

The primary goal of ZS is to make the duration 
of frame transfers in CAN deterministic, 
hence removing any transmission jitter due 
to BS. To this extent, it has to be remarked 
that hardware implementations of ZS (e.g., 
based on FPGAs) are able to reduce this 
jitter to zero.
Moreover, a very interesting side effect 
of stuff bit removal is that data integrity 
improves noticeably, because the interaction 
between BS and CRC calculation no longer 
takes place.
As shown in [10], the residual error probability 
decreases by about two orders of magnitude 
when a ZSD codec like 8B9B is used alone. 
The addition of the ZSC mechanism in 
ZS is likely to improve reliability further, 
because stuff bits are removed from the 
CRC field as well. Unlike nested CRCs, ZS 
has the advantage of improving both timing 
accuracy and data integrity at the same 

time. Research activities on these aspects are 
in progress.
It is worth noting that not necessarily all 
messages exchanged on the CAN bus must 
undergo ZS encoding. On the contrary, it can 
be enabled selectively (depending on the 
message identifier) uniquely for those data 
that require high reliability and low jitter. Only 
nodes that exchange ZS-encoded messages 
are required to implement the related codec. 
Moreover, ZSC is necessary only on the 
transmitting side: receivers only have to strip 
the tuning string away. In this way, system 
implementation complexity and cost decrease, 
and seamless coexistence with existing CAN 
devices and applications is ensured.

ZS codec

The ZS method can be implemented efficiently 
through software codecs. As discussed in the 
previous sections, from the conceptual point 
of view, ZS encoding is performed in two 
steps:
	 1.	 Payload encoding, according to  
		  VHCC;
	 2.	 Generation of T, according to ZSC.
Given that the same approach has been 
adopted in its practical implementation, we 
can consider that ZS encoding time is the 
sum of the times spent in the two steps listed 
above.
In the decoding process, T is simply discarded 
before forwarding E to VHCC decoding. Given 
that discarding T can be done in negligible time 
on any modern microcontroller, we can safely 
assume that ZS decoding time as a whole 
is equal to VHCC decoding time. The same 
reasoning also applies to memory footprint.
Considering ZS encoding first, experimental 
results about VHCC encoding performance 
and memory footprint on an NXP LPC1768 
microcontroller [11] running at 100MHz, are 
available in [8] and are shown in the top rows 
of Tables 2 and 3, respectively. For what 
concerns performance, the table lists the 
worst-case encoding delay, that is, the one 
corresponding to the maximum size of D (and 
to a size of P equal to 6.5), as well as the 
corresponding computation jitter.
Regarding footprint, separate figures are 
given for read-only and read/write memory, 
a distinction often important in embedded 
systems. 
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Moreover, separate values have been given 
for code and data, the latter consisting of 
the lookup tables used by the various code 
modules. Stack space has been accounted 
for as read/write memory.
The ZSC algorithm has instead been 
implemented (in combination with the 8B9B 
payload encoding scheme) on an NXP 
LPC2468 microcontroller [12] running at 
72MHz and then evaluated in [9]. As before, 
performance and footprint data are shown 
in the center rows of Tables 2 and 3 even 
though, in this case, they must be considered 
as a conservative approximation of ZSC 
encoding properties on the LPC1768.
This is because, besides the raw difference 
in clock speed already mentioned above, the 
two platforms support different instruction sets 
and are based on different processor cores, 
too. More specifically, the LPC2468 is a low 
end component based on an ARM7TDMI S 
core designed in 2001. Instead, the LPC1768 
is based on the contemporary Cortex-M3 
processor core with a better instruction/cycle 
ratio, due to architectural enhancements.
The improvement may be quantified by 
examining the experimental results reported 
in [7], where the 8B9B codec was evaluated 
on both platforms. In that case, performance 
was on average about 35% better and 
code footprint was about 30% lower on 
the LPC1768 with respect to the LPC2468. 
Clearly, using one architecture or the other 
could not bring any improvement to table 
sizes.
Concerning table sizes, it is also worth to 
remark that the relatively large size of the 
ZSC table with respect to the others is due to 
the fact that, in order to generate T properly, 
the ZSC algorithm needs to calculate L’s 
contribution to the CRC RL. When this 
operation is performed on a byte-by-byte 
basis, it requires a lookup table of 28=256 
15-bit entries, that is, 512 bytes as indicated 
in Table 3.
As mentioned above, it is possible to 
accurately approximate ZS decoder footprint 
and the corresponding delay by considering 
only the VHCC decoder contribution [8], 
shown in the bottom rows of Tables 2 and 3.
Summarizing the results, ZS encoding and 
decoding as a whole can be performed by 
introducing less that 12µs of delay in the 
communication path. 

Even more importantly, software processing 
introduces a negligible amount of jitter, 
less than 0.5µs. Hence, it does not go 
against one of the goals of ZS itself, that 
is, jitter reduction. Indeed, the remaining 
communication jitter is bit-rate independent 
and well below one bit time, even at the 
maximum CAN bit rate of 1Mbit/s.
Furthermore, as pointed out in [9], a low-
jitter version of the ZS encoder was also 
developed, which trades off at most 1.49µs 
of extra delay to reduce jitter below 30ns.
It is also possible to get an estimate of 
the actual delay and footprint of the ZS 
encoder, when it is completely implemented 
on the LPC1768, by applying the 
LPC2468→LPC1768 improvement factors 
mentioned above.
The predicted worst-case delay turns out 
to be 10.15µs, while the predicted footprint 
is 2193B. However, due to the inherent 
uncertainty of the method (applying a 
footprint and performance improvement 
factor derived from analyzing a certain code 
module to another), these numbers shall be 
taken as an estimate and will be the subject 
of further experimental evaluation in a future 
work.

Table 2: ZS codec performance

Table 3: ZS memory footprint
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Summary

CAN FD brings noticeable improvements over 
CAN, which include much higher throughput 
and better data integrity. Unfortunately, its 
advantages cannot be easily exploited in 
networks to which nodes based on legacy 
controllers are attached.
In this paper, an encoding scheme is 
described, referred to as Zero Stuff-bit (ZS), 
which permits to prevent the insertion of stuff 
bits completely in frames sent by conventional 
CAN controllers. As a consequence, it 
completely eliminates the related transmission 
jitter and noticeably reduces the residual error 
probability.
A portable, highly optimized industrial-grade 
ZS codec for typical embedded platforms 
has been developed in our Institute, mainly 
considering the NXP LPC1768 [11] and 
LPC2468 [12] microcontrollers as a case study. 
It has been thoroughly tested in order to prove 
feasibility, correctness, and performance of 
our solution [9]. While ZS does not improve 
throughput, it successfully addresses both 
jitter and data integrity issues that affect 
conventional CAN communications. For this 
reason, we believe that ZS can be adopted as 
an interim software solution to ease migration 
from CAN to CAN FD.
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