
iCC 2015 CAN in Automation

06-1

Increasing resilience by finding unknown
vulnerabilities

Aviram Jenik, Beyond Security

More than one million cars were recently recalled by Fiat-Chrysler when a new attack
on the Engine Control Unit (ECU) was made public. The attackers had no access to the
code; the attack used a pure “black box” approach.
All companies are in a rat race - trying to find vulnerabilities in their networks, and
then patching them (or blocking them with defense tools). But some, like the auto
manufacturers have bigger problems: vulnerabilities in automotive systems.
This talk will describe technologies that allow organizations to identify as yet unknown
vulnerabilities in their own and in 3rd party products, thereby considerably increasing
resilience against such attacks; it will explain how a “resilience certification” process
can be established to quantify whether a device, an application or an entire car is
reasonably secure, in a systematical and repeatable process. It will also discuss what
to do once such an unknown vulnerability is discovered.
The main concepts in the talk will be black box testing and fuzzing, with a special focus
on automatic testing that requires little security expertise and can be done (once the
guidelines are established) by junior or inexperienced personnel, making the process
efficient and scalable. Examples will be given for CAN-BUS and OBDII which are unique
to the automobile industries, as well as some more common examples used by network
devices and Internet servers.

The recent attack on Fiat-Chrysler‘s
“Uconnect®” system made headlines
recently. What wasn‘t emphasized was
the fact the attackers did not have any
internal knowledge about the system they
were hacking. The well-documented attack
was a pure “black box” approach, where
the attackers try to find weaknesses from
the outside. How successful was it? The
attackers were able to gain complete control
over a Jeep remotely, while a driver was in
it, hopelessly trying to operate it against the
orchestrated attack. Of course, this is one
attack that was made public – we are left
to wonder how many other such attacks are
kept secret.

Most organizations have an established
vulnerability management program where
they monitor and fix security holes as those
are published. For example, Microsoft
releases vulnerabilities on a certain day
every month, allowing companies to check
if they are vulnerable and fix as needed.
Vulnerability intelligence is also at a
developed stage where organizations can
receive prior information about vulnerabilities
that are available in the underground and

have not yet been publicly disclosed. There
are currently stable methodologies (even
if sometimes difficult to follow) to increase
resilience against known attacks.

But this kind of program only handles known
vulnerabilities. For some organizations,
managing known vulnerabilities is not enough
since they face a real threat from targeted
attacks (aka “Advanced Persistent Threat”
APT) that may use zero day vulnerabilities
developed especially for this task; to
penetrate the defenses. The automotive
industry must at this point assume that it
is a primary target for dedicated attackers
and that fixing vulnerabilities after they
have been made public is not going to give
their customers much confidence in their
products.

In fact, in most of the first world, the threat
of the 21st century is a direct cyber-attack.
In that scenario, each rival has a secret
stash of zero day vulnerabilities that are
meant to target some specific country,
organization or infrastructure component.
In this threat scenario, no one knows about
the weaknesses that have been discovered

iCC 2015 CAN in Automation

06-2

except the potential attacker. There is no
advance intelligence to gather, and no public
information to assist. How can a potential
target increase resilience against an
attack that may come through an unknown
vector?

Until now, governments and organizations
were completely powerless. They often
have not been able to secure copies of
the original code of the products used
within their borders or products. Vendors
are naturally reluctant to surrender their
intellectual property. In addition, even if
the source code was available, evaluating
it for security weaknesses is very difficult
and consumes much time and manpower.
It‘s hard to give actual success stories of
cases where having access to the source
code enabled organizations to actually find
security holes in 3rd party products. It seems
that at some point this was a mere ceremony
– the vendor provided the code which was
never checked. All the disadvantages with
nothing to show for it.

The alternative is to use a 3rd party such as
a certification agency following a certification
standard (such as “Common Criteria”, ITSEC,
COFRAC, and ANSSI) with the hopes that
they have the expertise, along with enough
access to the product‘s internals, to evaluate
it whether it was secure. But this alternative
suffered from a fatal flaw: the certification
process is long and as the speed of new
model development accelerated, certifying
each version of every component by every
supplier becomes impractical. To compound
the difficulty: Although vendors can be forced
to cooperate with the certification agencies,
once the certification process was finished
they no longer had any obligation toward the
certification agency, nor did the certification
process have any enforcement over future
version changes (sometimes drastic) in the
product that made the previous certification
meaningless.

Without the ability to trust a 3rd party,
manufacturers have been helpless in the
face of zero day vulnerabilities and targeted
attacks. However, the new concept of
“Black box Testing” may change this picture
completely.

The effectiveness of black box testing

How well does “black box testing” work?
Popular vulnerability databases such as
“SecuriTeam” and “OSVDB” document about
30-50 new vulnerabilities a week. More than
90% of those vulnerabilities are discovered
using black box testing techniques. In fact,
the recent vulnerabilities that made it to the
headlines - “Heartbleed” is the outstanding
example in recent memory – were all found
using black box testing techniques, even in
cases where the source code was available.
“Heartbleed” uncovered a vulnerability in
OpenSSL, which is an open source project.
The vulnerability had been present in the
code for many years and was not found by
manual source code audits despite being
used by thousands of applications including
by major security vendors. A black box
test picked up this vulnerability that was
previously hidden for decades demonstrating
the superiority of this technique.

A recent wave of attacks on closed systems
– routers, industrial control systems and
as mentioned – car ECUs, demonstrates
how effective this attack is against closed
systems. We do not yet have documented
examples of attacks on critical infrastructure
such as water, gas and train systems, but
clearly the same technique would work for
them as well.

In addition to being a powerful technique
for finding issues, ‚black box testing‘ has
an additional strong characteristic: it does
not require the source code. In fact, by
definition, the test is done on a “black box”.
We need to know almost nothing about the
product or device we are testing, other than
the protocol it is using to communicate.

Operational efficiency

The automated nature of black box testing
and especially the specific methodology
of ‚fuzzing‘ enables repeatable testing in
a lab environment with very little manual
intervention. In particular, “exhaustive
fuzzing”, which will be explained in the talk,
provides a process to deliver the widest
range of test cases with very little manual
work – letting a machine do the grunt work.

iCC 2015 CAN in Automation

06-3

The result is the exposure of flaws that will
be open to attackers after product release.
Since the tool needs to only be set up once,
it is possible to repeat these tests for new
versions, or for similar systems. For example,
a certification agency can set up a lab where
certain types of devices are tested by setting
them up in the testing environment and then
testing against a pre-defined benchmark
that is only configured once. In several days
millions of attack scenarios can be tried out
automatically, giving a wide test coverage.

The main characteristics of black box
testing

The first thing to understand about black
box testing is that common or known attack
signatures are not employed. This is unlike
other dynamic testing tools and Vulnerability
Assessment tools such as Vulnerability
Scanners or Vulnerability Management
systems. The idea behind black box testing is
to find unknown vulnerabilities; by definition,
those cannot be found using already known
attack signatures.

In addition, black box testing is applicable
to all protocols. For example, the current
focus is on CAN-BUS and OBDII; but while
these protocols are important, they may
not be the only input to programs used in
automotive systems. Other protocols such
as Bluetooth and Wi-Fi must be tested and
can be thoroughly investigated using the
same testing tool. The more distant future
seems to be heading towards file-based
attacks.

File-based attack is especially dangerous
since it can “jump over” an air gap. Imagine,
for example, an automotive network
that accepts files by USB, or by update
processes. Any file, such as PDF or JPG
image, perhaps a configuration file or an
anti-virus update can carry a dangerous
payload in them. Any automotive program
that accepts a file type will be vulnerable. As
a simple example, Acrobat reader, the most
popular PDF reader, suffered over the years
from a multitude of vulnerabilities that allows
someone to create a malicious PDF file that
would essentially carry a payload that will be
executed on the target machine.

This would be true even if the file was
scanned by an anti-virus or a firewall
and even if the PDF file was manually
transferred into an isolated network, like an
automobile – essentially jumping over the
air gap. Such a vulnerability can completely
compromise the isolated network and can
only be found using a black box testing
process since it may be a vulnerability
that is unknown at the time of product
release.

Many devices today, from simple music
players to automotive systems process mp3,
wav and jpg files and could all be vulnerable
to such an attack vector.

Testing proprietary protocols

Black box testing shouldn‘t just be limited
to automotive components that use
common protocols, either. The most
dangerous vulnerabilities exist in products
and applications that use proprietary
protocols that have not been subjected
to rigorous testing. So black box testing
must support proprietary and custom
protocols as well. In fact, when put into
practical use, we find that proprietary
protocols are the weakest protocols. The
writers of these protocols believe that no
one can attack the protocol since its
format is unknown. They are very wrong:
it‘s possible to attack (as demonstrated
by the black box test approach) and when
attacked, weaknesses are immediately
exposed.

The black box testing process also has two
additional and opposite (but complimentary)
features: It enables us to cover many
different potential attacks (a large attack
search space) while allowing us to prioritize
which attacks will happen first. This enables
us to choose between a quick, and less
thorough check and a longer, much more in-
depth test. A common use for it would be for
organizations to test some products (to be
deployed in a less sensitive networks) for a
few hours or perhaps a day, while subjecting
other products to a more complete, very
rigorous testing to potentially uncover more
weaknesses over a course of days and
weeks.

iCC 2015 CAN in Automation

06-4

Another feature, not a must but very much
a ‚nice to have‘ is the possibility to include
black box testing in a protocol compliance
process. Since we are interested in security
weaknesses of any kind, it would be good
to be able to test across the entire protocol.
This would reveal vulnerabilities in obscure
parts of the protocol – documented features
that are rarely used. A glaring example is
a vulnerability in the PDF file specification,
found more than a decade after publishing
the specification, which basically allowed
any attacker to embed commands that
would be executed by the PDF reader, on
the target machine. This direct attack was
hiding in plain sight, and went unnoticeable
until someone decided to go over the entire
protocol with a black box fuzzer to look for
weaknesses.

Fixing problems to increase
resilience

To be clear, our purpose is not to find
problems but to help fix them. However,
there is a surprising consequence to black
box testing: since the weaknesses found
are very specific and describe the attack in
detail (in a way that enables re-creation) it
becomes very easy to fix it.

If the test is being done by the actual
developers, the development team can see
how to attack works and fix the application
to prevent the attack (after all, the attack
uses a weakness that should not be
there).

If the test is done by a 3rd party with no
way to modify the application, it is often
possible to block the attack by filtering or
masking the attack based on its parameters.
Firewalls, IDS or filtering software can assist
in preventing such attack.

That may be one of the most surprising
aspects of black box testing: Fiat-Chrysler
had to recall more than 1 Million cars at a
huge expense, where it instead could have
found the weakness while the software was
being developed and fix the problem at
almost zero cost. By waiting until the product
is released, the cost of repairing that one
flaw sky rocketed.

Real life examples

The author of this paper, while doing a black
box test on a very popular SMTP server,
stumbled upon a documented, public,
feature in the SMTP protocol that allowed
attackers to easily bypass content filtering
software, including firewalls, anti-viruses
and IDS‘s. This feature was so out in the
open that it was implemented in popular
software like Outlook and Outlook Express
(as well as most of the alternatives), with the
entire industry being unaware of the huge
hole this feature exposed. This attack was
went unnoticed for decades, and only a
black box fuzzing test by an objective and
unbiased machine found it. Covering the
entire protocol would protect against such
hidden issues.

Additional points to consider

Black box testing by definition tries to cover
a huge attack surface. Prioritization is one
way to help cover that space efficiently,
but another way is by devising a scalable
test process. The black box testing process
needs to be scalable for use with multiple
processors and/or multiple machines to
speed up the process. In an age where
processing power is cheap, the ability to
trade computing power for a faster test is
critical.

When doing black box testing we must
make sure not to fall into the “false positive”
trap. Just like the story about the boy who
cried wolf, if we identify vulnerabilities that
end up being false, we risk de-sensitizing
the organization and thus when a real
critical vulnerability is found, no one will
listen. The result of the black box testing
must be completely accurate with tests and
the resulting failure easily duplicated, while
being sensitive enough to even the slightest
attacks such as off-by-one attacks.

Can all of these thing be done? The author of
this paper thinks the answer is yes. The talk
outlined here will present a method of black
box testing (a method called “exhaustive
fuzzing”) which can be used to uncover
unknown vulnerabilities practically, does
not require the source code, can be used

iCC 2015 CAN in Automation

06-5

to cover the entire protocol but also has
built-in prioritizations. Exhaustive fuzzing
is scalable enough to allow reducing the
testing time drastically by employing more
computing power, and due to its exhaustive
nature it can work well for compliance and
certification testing. Exhaustive fuzzing
is extremely accurate, and will only report
vulnerabilities when there is a high chance
that they are in fact exploitable. To cap it
off, exhaustive fuzzing can be used for any
protocol, over any medium, whether network,
wireless, file-based attacks, memory attacks
and direct CPU attacks.

If this sounds too good to be true, let’s
double the ante by adding the fact that
exhaustive fuzzing can be done by a
relatively untrained personnel and does
not require much expertise after the initial
threat modeling and configuration is done. It
is therefore possible for a security expert to
build the model for certain protocols as used
in automotive applications (for example,
CAN-bus or OBDII) and let less experienced
team members run the tests themselves.

After demonstrating “exhaustive fuzzing” for
known and documented protocols, and if the
time permits, we will show how exhaustive
fuzzing can be done for unknown or
proprietary protocols.

In conclusion

The talk will describe a practical way to
enable organizations test 3rd party products
and applications for unknown vulnerabilities.
This, without needing to have access to the
source code and with no vendor cooperation.
In fact, nothing is needed besides a running
product and basic knowledge about the
protocol (which can be either well defined,
or obscure or proprietary). All this, with high
accuracy.

And by employing very smart tools that can
be used by someone who is not necessarily
a security expert.

Aviram Jenik
Beyond Security
19925 Stevens Creek Blvd.
US-95014 Cupertino, CA
Tel. +1-800-801-2821
aviram@beyondsecurity.com
www.beyondsecurity.com

