
iCC 2015 CAN in Automation

06-6

Plug-and-secure communication for CAN

Andreas Mueller, Timo Lothspeich, Robert Bosch GmbH

Security is a topic of rapidly increasing importance in both automotive as well as in-
dustrial applications. This is driven by the current trend towards ubiquitously con-
nected systems, a higher degree of automation, and the increasing openness of sys-
tems, with a multitude of interfaces and APIs that an attacker might use for malicious
purposes. In today’s systems, the communication via CAN is often insecure. Although
suitable concepts and cryptographic algorithms are basically available, the distribu-
tion of the required (symmetric) cryptographic keys between the involved nodes is still
challenging. Currently, the key establishment comes along with either a high lo-gistical
/ organizational effort or high complexity and/or costs. For that reason, we propose a
novel approach for establishing and refreshing symmetric cryptographic keys between
different nodes in a CAN network in a plug-and-play manner. Our ap-proach captivates by
its simplicity, low complexity and high cost-efficiency, and may be readily implemented
without any modifications of standard CAN controllers.

Introduction

The recent trend towards ubiquitously
connected systems – be it cars, factories or
buildings – does not only come along with
numerous opportunities and benefits, but
imposes also serious new security threats
with a potentially huge impact. If everything
is interconnected with each other and with
more and more interfaces and APIs being
introduced in order to facil-itate innovative
services and applications, also the attack
surface for malicious ma-nipulations and
intrusions is increasing significantly. Without
proper countermeas-ures, hackers may
easily take over the remote control of a car,
eavesdrop on con-fidential production data
or manipulate a building automation system,
for instance.

The fact that this is not just a purely theo-
retical threat, but rather a real and serious
menace, is reflected by various prominent
attacks that have been performed and
published only recently. In [1], for example,
the authors have managed to remotely
inject messages on the CAN bus of a Jeep
Cherokee (and thus affect important phys-
ical systems, such as steering or braking)
by exploiting various security flaws and
connecting to the vehicle via a mobile net-
work. This led to recall of about 1.4 million
cars and fueled legislative initiatives to

mandate car manufacturers to support
reasonable measures to protect cars
against hacking attacks [2]. Further securi-
ty leaks and successful attacks on cars
and other vehicles have been reported in
[3] - [5], for example. One of the reasons
why especially remote attacks are so rele-
vant and threatening is the fact that these
attacks may easily scale and that hackers
do not even need physical access to the
system under attack. For instance, imag-
ine a scenario with thousands of cars be-
ing remotely hijacked and hackers taking
control of them. Then, they may precipitate
a breakdown of the whole traffic infrastruc-
ture of a city or country by manipulating all
cars in a coordinated manner. Clearly, this
may not only lead to a tremendous physi-
cal damage, but also to a significant im-
pact on the whole economy and society.
Therefore, the support of appropriate se-
curity mechanisms represents without doubt
a crucial prerequisite for the success and
acceptance of any connected system.

A solid and robust security concept gener-
ally covers many different aspects and
represents a multi-stage approach, which
combines different components. Usually,
this includes things like security-aware
development processes, fine-grained ac-
cess control mechanisms and policies, the
use of cryptographic methods as well as

iCC 2015 CAN in Automation

06-7

associated key management procedures.
In automotive networks – which we will
focus on in the following, even though our
approach is readily applicable to many
other systems as well – a secured com-
munication on CAN represents a particu-
larly important building block in this re-spect
since a compromised CAN network may
have a direct impact on passenger or other
people’s safety. This is because CAN is
typically used for interconnecting all kinds of
sensors and actuators, e.g., for powertrain
or chassis subsystems. Today, however, the
communication on CAN is mostly completely
insecure. Even though suitable concepts
and algorithms are basi-cally available (such
as tailored approach-es for authenticating
or encrypting CAN messages [6], [7]), they
are not used in practice yet as various other
challenges still remain open. Among other
things, this includes proper standardization
across different OEMs and suppliers, but
also efficient approaches for establishing,
re-freshing and managing the cryptographic
keys that are required for the involved
cryptographic schemes. In this paper, we
therefore propose a novel approach ad-
dressing the latter aspect, which is able to
establish and refresh symmetric crypto-
graphic keys between two nodes in a CAN
network in a plug-and-play manner. To this
end, special properties of the CAN physi-
cal layer are exploited and the approach
captivates by its simplicity, low complexity
and high cost-efficiency. Moreover, it may be
readily implemented with no or only minor
extensions to standard CAN control-lers. It is
particularly suitable to enhance the security
against remote (and thus scalable) attacks
and thus may become an important building
block for secure com-munication on CAN.

The remainder of this paper is structured
as follows: In Section II, we outline our
system and attacker model, followed by a
review of existing approaches to CAN se-
curity in Section III. Our novel approach for
establishing and refreshing cryptographic
keys based on special CAN properties is
then presented in Section IV. In Section V
and VI, we discuss certain implementation
aspects and elaborate on various security
considerations, before concluding the paper
with a short summary in Section VII.

System and attacker model

In the following, we always consider a set-
up as depicted in Figure 1. Two devices
(Alice and Bob) are connected to the same
CAN bus segment and want to establish a
pair of symmetric cryptographic keys. Af-
terwards, they may then use these keys
for encrypting and/or authenticating any
messages exchanged between them. In
addition, however, there may also be a
potential attacker (Eve) connected to the
same bus segment, which tries to deter-
mine or influence the keys to be estab-lished
between Alice and Bob. In this re-gard, we
make the following assumptions on Alice,
Bob and Eve:
	 1)	 All nodes have a similar setup, made

up of a CAN transceiver, a suitable
CAN controller, as well as a micropro-
cessor running the actual application
software.

	 2)	 Eve is the victim of a remote attack in
the sense that the original software
running on that node has been re-
placed by a modified (malicious) soft-
ware.

	 3)	 Eve may eavesdrop on all messages
exchanged on the CAN bus. Further-
more, she may inject arbitrary (single)
bits on the bus, e.g., by bypassing the
CAN controller and directly accessing
the CAN transceiver from the malicious
software running on the device.

Figure 1: Considered system model

A major challenge in general is to make
sure that even if one device has been
suc-cessfully attacked (here: Eve), the
impact on the overall system can be kept
to a minimum. In the previously mentioned
attack on a Jeep Cherokee, for example,
first of all the head unit has been success-
fully compromised [1]. With proper security
mechanisms in place (e.g., proper mes-
sage authentication), it would not have been

iCC 2015 CAN in Automation

06-8

possible for the head unit to control safety-
relevant functions, such as the brakes
of the car, by injecting CAN mes-sages
that it actually is not allowed to transmit.
However, this is only possible as long as
the cryptographic keys of the legit-imate
nodes (here: Alice and Bob) remain secret.
Therefore, Eve naturally must not be able to
determine and/or influence the-se keys.

Review: Security for CAN networks

The protection of the integrity of a mes-sage
and the assurance of the authenticity of its
sender should generally be among the top
security goals in CAN-based net-works as
CAN is widely used for control-ling physical
systems or processes with a potential direct
impact on safety. There-fore, unauthorized
manipulations have to be prevented or they
should at least be detectable. Confidentiality,
in contrast, is considered to be only of
secondary im-portance and may be useful
for making it harder for an attacker to learn
the current system state or for delivering
critical soft-ware updates, for example.

In principle, all these security goals could
be achieved in exactly the same way as in
the conventional IT world (e.g., using digi-
tal signatures, message authentication
codes, etc.), but for optimal performance the
specific constraints of CAN-based networks
should be properly taken into account. This
includes things like the lim-ited data rate and
message sizes, for ex-ample, as well as the
limited computational power and memory
of many CAN devices. Therefore, in [6] and
[7] several security mechanisms specifically
optimized for CAN have been proposed,
which take the-se specific constraints
into account. In this regard, symmetric
cryptographic schemes turn out to be the
basis for most of the proposed schemes due
to their limited computational complexity
and bandwidth requirements. The use of
symmetric cryp-tography, however, requires
the availability of symmetric (i.e., identical)
keys at the involved nodes and the distribution
/ estab-lishment of these keys represents a
major challenge. Possible options include a
manual distribution of keys, e.g., at the end
of a production line. This, however, involves
a considerable (organizational) complexity

and reaches its limitations if one or several
devices have already been compromised
before being integrated into the network
(for example due to an attack performed
at the supplier). Besides, an automated
refreshment of keys cannot be realized this
way. An alternative approach that has been
actively discussed and con-sidered in recent
years is to use key estab-lishment schemes
based on asymmetric cryptography for that
purpose, such as the Diffie-Hellman key
exchange protocol [8], [9]. Major drawbacks
of this approach are the high computational
complexity as well as the comparatively large
amounts of data that have to be exchanged
between two nodes in order to set up a
(secure) symmetric key. Besides, it should
not be forgotten that the security of the
Diffie-Hellman key exchange relies only on
the difficulty to efficiently solve the discrete
logarithm problem on finite fields or elliptic
curves using state-of-the-art methods.
Therefore, the approach may become in-
secure from one day to the other if ade-
quate progress is made in this respect. This
could be the advent of a high perfor-mance
quantum computer, for example.

In the next section, we therefore propose a
novel approach for establishing symmetric
cryptographic keys between two nodes (or
to be more precise: an approach for estab-
lishing a shared secret, based on which
symmetric keys can be derived), whose
security does not rely on hard mathemati-
cal problems, but rather on physical prop-
erties of the CAN bus. Furthermore, it has
an extremely low complexity, low band-
width requirements and may be readily
implemented in practical systems. Finally, it
may also be used for efficiently refresh-ing
already established keys, thus making it a
very useful and promising building block for
future secure CAN networks.

CAN-based key establishment

The basic idea of our approach is that Alice
and Bob agree on a shared secret / key by
means of a public discussion using standard
CAN messages. In particular, both nodes
simultaneously transmit ap-propriate CAN
frames, so that Eve is only able to see the
superposition of both mes-sages, without

iCC 2015 CAN in Automation

06-9

knowing the exact content of each of them.
However, since Alice and Bob themselves
know what they have transmitted and
since they can see the superposition of
both messages as well, they may readily
conclude what the re-spective other peer
has transmitted and thus establish a shared
secret that is not known to Eve.

For the concrete realization, we rely on the
characteristic property of the CAN bus that
bit ‘0’ is dominant and bit ‘1’ is recessive,
which represents also the basis for the
classical bus arbitration. In fact, if Alice and
Bob simultaneously transmit a certain bit (as
required for our approach), there are in total
four different cases that may occur. These
are put together in Table 1. Clearly, if one of
the two nodes transmits a dominant bit (‘0’),
also the effective bit on the CAN bus is a ‘0’
and only if both nodes transmit a recessive
bit (‘1’), we also have the recessive state
after the superposition on the CAN bus.
Therefore, the CAN bus may be considered
as a logical AND func-tion of the individually
transmitted bits.

Table 1: Possible combinations of dominant
and recessive bit transmissions

Alice Bob Effective Bit
on CAN Bus

0 0 0
0 1 0
1 0 0
1 1 1

The actual procedure for agreeing on a
shared secret between Alice and Bob is a
multi-step approach as follows:

Example (for N = 10):
RAlice = 0 1 1 0 1 0 0 1 0 1
RBob = 1 0 1 1 0 1 0 1 1 0

Example:
 SAlice	 = 01 10 10 01 10 01 01 10 01 10
 SBob	 = 10 01 10 10 01 10 01 10 10 01

Example:
 Seff = 00 00 10 00 00 00 01 10 00 00

Clearly, Eve may easily determine this bit
sequence as well by means of simple pas-
sive eavesdropping on the channel. There-
fore, it does not really help us further, yet.

Example: In Seff given above, there is a ‘1’
in tuples number 3, 7 and 8 (assuming that
we start counting the tuples with 1).

Example: Based on the outcome of step
4, Alice and Bob have to delete the bits at
positions 3, 7 and 8 in their original bit se-
quences RAlice and RBob . Hence, we get:

 KAlice	 = 0 1 1 0 1 0 0 1 0 1	 = 0 1 0 1 0 0 1
 KBob	 = 1 0 1 1 0 1 0 1 1 0	 = 1 0 1 0 1 1 0

Please note that this is done because
whenever the effective bit on the CAN bus
is a ‘1’, it is clear that both Alice and Bob
must have transmitted a ‘1’. Likewise, since
the two bits in a tuple are always inverse to
each other (cf. step 2), it is also clear that
both nodes must have transmit-ted a ‘0’ for
the other bit in that case. However, exactly
the same conclusion can also be drawn by
Eve and therefore the tuples including a ‘1’
do not provide any usable information for us
as no secrecy is contained. For that reason,
these bits are simply removed from Seff .

1)	 Alice and Bob generate independently
	 of each other random bit strings RAlice
	 and RBob of a pre-defined length N.

2)	 Alice and Bob extend these random bit
	 sequences in such a way that after each
	 bit the corresponding inverse bit is
	 inserted, leading to the modified bit
	 sequences and SBob of length 2N.

3)	 Alice and Bob simultaneously
	 transmit the bit sequences SAlice and
	 SBob, leading to the superimposed
	 (effective) bit sequence Seff on the
	 CAN bus, which is given as Seff = SAlice
	 AND SBob

4)	 Alice and Bob determine all tuples in Seff
	 which include a ‘1’.

5)	 Alice and Bob delete the bits in their
	 original random bit sequences RAlice and
	 RBob corresponding to the tuples which
	 included a ‘1’ as determined in step
	 4. The result are two shortened bit
	 sequences, denoted as KAlice and KBob.

iCC 2015 CAN in Automation

06-10

Clearly, what remains after step 5 are the bits
that are different in the initial bit strings RAlice
and RBob. When simultaneously transmitting
SAlice and SBob, we always get ‘00’ for the
tuples corresponding to these bits. Hence,
by eavesdropping on Seff, Eve only knows
that Alice and Bob have inverse bits in their
original random bit sequences RAlice and RBob
at that position, but she is not able to tell
which one has the zero and which one has
the one. Alice and Bob, in contrast, know
which bit they have transmitted themselves,
they can also conclude that the respective
other peer has transmitted the inverse bit
by evaluat-ing Seff and therefore they have
a clear advantage compared to Eve. Thus,
KAlice and KBob are unknown to Eve, but are
known by Alice and Bob.

Discussion

With the proposed scheme it is possible
to establish a shared secret between Alice
and Bob by means of a simple public
discussion, i.e., by simply transmitting and
receiving CAN frames and interpreting the
superimposed frames on the bus in the right
way. Consequently, the involved complexity
is extremely low, especially compared to
existing key establishment schemes, such
as the Diffie-Hellman key exchange protocol.
Yet, it may be done in a fully automated
manner and is thus clearly superior
compared to the manual distribution of keys.

The concrete integration of the core idea
in a full-blown solution with suitable proto-
col mechanisms is still ongoing work and
not elucidated in more detail here due
to space constraints. In particular, for a
complete solution additional mechanisms are
required, e.g., for triggering the synchronized
transmission of Alice and Bob, for initiating
the whole procedure, and for somehow
addressing the involved nodes, for example.
In general, however, we do not expect any
showstoppers in this respect and for most
aspects solid ideas are already available.

In a practical realization, the simultaneous
transmission of the bit strings SAlice and
SBob preferably would be done in the pay-
load part of a CAN frame, thus represent-
ing a deviation from standard CAN, where
simultaneous transmissions may only
oc-cur during the arbitration phase when
transmitting the CAN identifiers. With
some other smart ideas, however, it is still
possible to implement the proposed in such
a way that other noninvolved nodes (apart
from Alice and Bob) see always valid CAN
frames on the bus (even with superimposed
random bit strings in the payload field) and
therefore would not trig-ger the transmission
of any error frame. This will be presented
in more detail in the next section. What is
important to note, though, is that the number
of payload bits in a CAN frame is limited
to 64 bits in case of standard CAN and
512 bits in case of CAN FD. Furthermore, the
length of the effective shared secret that we
can gener-ate with one run of the proposed
proce-dure for a given length N of the initial
random bit strings RAlice and RBob is not
constant, but depends on how many values
in RAlice and RBob are equal. Clearly, this
may vary between zero and N, with an
expected value of N/2. Since in step 2 the
initial random sequences are extended by a
factor of two by inserting always the inverse
bit after each bit and since all these 2N bits
have to be transmitted over the CAN bus,
the overall efficiency ρ, which relates the
length of the usable shared secret after one
round of the proposed approach (given by
the length of KAlice and KBob, respectively) to
the number of required bits to establish this
shared secret (given by 2N) is generally
given by

0 ≤ ρ ≤ ½, (1)

with an expected value of E[ρ] = ¼. This
means that on average four payload bits have
to be simultaneously transmitted by Alice
and Bob in order to establish one secret bit.
Since for achieving state-of-the-art security
usually symmetric keys of length 128 bit or
even 256 bit are required, it is quite clear that
for both standard CAN and CAN FD a single
run of the proposed approach is generally
not enough to gen-erate a sufficient number
of secret bits. Therefore, also for addressing
this issue suitable protocol mechanisms

6)	 The resulting (shortened) bit sequence of
Alice (KAlice) is now exactly the in-verse of the
corresponding bit se-quence of Bob (KBob),
which eventually is the established shared
secret.

iCC 2015 CAN in Automation

06-11

are required, which ideally would enable
the generation of keys of arbitrary length.
This may be done by repeatedly performing
the proposed procedure and combining the
secret bits generated during each run in an
appropriate way.

Another very promising application of
the our approach is to use it not just for
generating full keys of 128 of 256 bits length,
but for periodically refreshing existing keys.
This is generally beneficial in order to limit
the time during which a certain key is used
or equivalently the number of messages
that are secured using one par-ticular key.
By doing so, certain attacks become more
difficult (e.g., plain-text at-tacks) and the
potential damage in case that a particular
key is revealed at some point in time can be
limited. Therefore, periodic key refreshment
is a highly rec-ommended security practice
in general, see for example [10] and [11].
For refreshing a key, however, already a
limited number of secret bits is sufficient as
they may be combined with the old key in an
appropriate way. This may be done by using
a cryptographic hash function, for example.
Hence, the proposed procedure may be
regularly inserted into the regular CAN
communication in order to generate new
shared secret bits and to refresh the used
keys accordingly for increasing the securi-ty
level. The periodicity of the key re-freshment
may be adaptively adjusted depending on
the respective needs, thus making it a very
flexible and powerful solution in practice.
Finally, it should be noted that CAN is a
multicast-based communication protocol
and messages transmitted by one node
generally have to be received by multiple
nodes. This implies that in many cases
not only the communication between two
nodes has to be secured, but rather the
communication between groups of several
nodes. Hence, cryptographic schemes for
message authentication, encryption, etc.
may only be reasonably applied in these
cases if all devices belonging to a certain
group are in possession of the same
cryptographic key. The procedure proposed
in this paper, however, cannot be extended
to a multi-node setup in a straightforward
manner. Nevertheless, there are still
several possibilities how so-called group

keys may be established. In the simplest
case, all nodes of a certain communication
group could establish a pairwise key with
one particular node of that group (e.g., a
gateway node), and then this node may
generate a suitable group key and signal
it to all nodes of the group in a secure
manner using the previously established
pairwise keys.

Implementation aspects

As already outlined in the previous section,
the bit strings SAlice and SBob are preferably
transmitted in the payload field of a CAN
frame. Without any additional measures,
however, this may lead to problems and/or
compatibility issues in practical realization.
In particular, with a direct implementation of
the proposed approach, the superimposed
CAN frame on the bus may violate the bit
stuffing rule since even if the individual bit
strings SAlice and SBob adhere to this rule,
it cannot be assured that this is also the
case for the effective bit string Seff on the
bus. For example, if SAlice = 01010101 and
SBob = 10101010, both strings would be valid,
but Seff = SAlice AND SBob = 00000000 would
clearly vio-late the bit stuffing rule. Hence,
other nodes may generate an error frame
if they observe such a violation on the bus
and clock resynchronization may become
more difficult. A relatively simple solution to
fix this problem is to insert a fixed bit change
(‘01’ or ‘10’) in both SAlice and SBob after each
sequence of at most four bits. This way,
Alice and Bob would always transmit the
same two bits at this position and since the
two bits include a bit change, the bit stuffing
rule is never violated in the error-free case.
However, this would come at the cost of a
higher overhead, of course. Alternatively,
Alice and Bob could determine on-the-fly
when it is necessary to insert a stuff bit.
In fact, both nodes have to read back the
effective bit sequence Seff anyway and
thus they could check in real-time if there
have been five identical bits effectively on
the bus and dynamically insert the inverse
bit after-wards in that case. Compared
to the first solution, the additional overhead
would be significantly lower, but in return
the complexity and processing requirements
are somewhat higher.

iCC 2015 CAN in Automation

06-12

A similar problem occurs with the cyclic
redundancy check (CRC) field of a CAN
frame in case of a direct implementation
of the proposed approach. Since Seff de-
pends on both SAlice and SBob, the valid
value for the CRC field of the effective
message on the bus would generally not
be equal to the superimposed CRC fields of
the messages transmitted by Alice and Bob
in case that they calculate the CRC field
in such a way that the transmitted frames
are valid. In order to solve this issue and
thus assure full backwards compatibility to
standard CAN, the correct CRC value that
matches to the effective CAN frame on
the bus could also be cal-culated by both
nodes on the fly and then be appended to
that frame after the payload field. While
making sure that the effective frame on the
bus is a valid CAN frame (based on existing
specifications), it has the nice side effect
that this procedure would automatically
help to make sure that both Alice and Bob
have received the same effective bit string
Seff (which is essential for deriving the
same shared secret). This is because if
one of the two nodes has received at least
one erroneous bit but the other one hasn’t,
they would append different CRC fields in
general, which may be detected by one of
the nodes if a recessive bit is overwritten by
a dominant one.

With the previously described approaches
for dealing with bit stuffing violations and
the CRC field, it is possible to achieve full
backward compatibility in the sense that all
frames on the CAN bus are always in line
with the existing specifications – at least in
the error-free case. Hence, smooth migra-
tion paths become possible, where not all
nodes connected to a CAN bus necessarily
have to support the proposed approach and
existing hardware / software may widely be
reused. A practical implementation may be
done solely in software (using CAN/GPIO
repinning, for example, and thus directly
accessing the CAN transceiver from the
microprocessor) or hardware-assisted,
where an additional hardware module
may take care of the specific requirements
of the proposed approach, such as the
synchronized transmission of Alice and
Bob. In this regard, we envision flexible

implementation options, where existing CAN
controllers taking care of the regular CAN
communication do not have to be modified
at all as long as they are supplemented
by an additional (light-weight) hardware/
software module.

Security considerations

If Eve as modeled in Section II is only
passively eavesdropping on the CAN bus,
she is not able to readily determine the
established shared secret bit sequences
KAlice or KBob. As already outlined in Section
IV, she just knows that the remaining
bits were different for both nodes,
but – unlike Alice and Bob – cannot tell
who has transmitted the zero and who the
one. If, in contrast, Eve is trying to perform
an active attack, for example by sending
additional own bits during the exchange of
SAlice and SBob between Alice and Bob,
there are two different possibilities that have
to be considered:

	 1)	 Eve is transmitting a recessive bit
	 2)	 Eve is transmitting a dominant bit

Transmitting a recessive bit is no different
from not transmitting at all since a reces-
sive bit does not change the effective state
on the CAN bus. Therefore, we only have
to analyze what Eve might do by superim-
posing another dominant bit to the bits
exchanged between Alice and Bob. To this
end, it is important to remember that with the
procedure proposed in Section IV only those
bits remain in the final shared secret for
which the effective bit on the CAN bus was
‘0’ for both the transmission of the original
and the inverse bit (cf. step 5). Moreover, if
Eve transmits a dominant bit, she cannot tell
what the status on the CAN bus would have
been without her transmission. Therefore,
we may conclude the following:

Conclusion 1: An active Eve may disturb our
procedure in such a way that the gen-erated
secret bit strings KAlice and KBob are actually
not equal on both sides. In order to be able
to detect such cases, therefore additional
mechanisms should be intro-duced, with
which Alice and Bob can verify that they
have really generated the same secret bit

iCC 2015 CAN in Automation

06-13

sequences KAlice and KBob. This could be
done by calculating and exchanging a hash
value of these bit sequences, for example.

Conclusion 2: An active Eve is not able to
enforce the generation of a particular shared
secret between Alice and Bob (which she
then would be aware of) and/or to learn the
shared secret that is established between
both nodes. This is because KAlice and
KBob depend not only on Seff (which may
be determined and influenced by Eve), but
also on the bits of RAlice and RBob, which are
unequal on both sides, and Eve has no way
to determine these bits.

Conclusion 3: An active Eve may easily
perform a denial-of-service attack by
completely preventing the establishment of
a shared secret, for example by continuously
sending a dominant bit. However, this threat
exists basically for any scheme since an
active Eve may easily block any CAN
communication on the bus. In this case, the
fail-safe mode of all devices should prevent
any serious safety-critical impact.

If we deviate from the attacker model
introduced in Section II and consider not
only remote attacks, but also attacks with
direct access to the CAN bus (e.g., using
own high-end equipment), the situation
is getting more challenging. Without any
further ado, a passive eavesdropper might
be able to determine the shared secret
established between Alice and Bob in this
case by analyzing the voltage levels on the
CAN bus, for example. This is because for
fixed positions of Alice, Bob, and Eve, the
volt-age level that Eve can observe on the
bus may be different depending on whether
Alice is transmitting a dominant bit and
Bob a recessive one or vice versa. For the
remote attacker case, this was not an is-
sue since she may only access the CAN
bus via a standard CAN transceiver, which
regenerates the voltage levels. A remedy
could be to artificially introduce a random
jitter in the transmit voltage levels of Alice
and Bob (within the allowed ranges), so
that Eve can no longer conclude who has
transmitted which bit. It should also be
noted, however, that with direct (physical)
access to the CAN bus, an attacker might

manipulate a car with much less effort,
e.g., by simply cutting through a cable or
manipulating the brakes. Nevertheless, a
more detailed analysis of potential attacks
with direct physical access to the CAN bus
as well as possible countermeasures is part
of our future work.

Conclusion and way forward

Security will play a crucial role for the
success and widespread acceptance of
connected systems, such as connected
cars and other vehicles. A major challenge
in this regard is how to distribute and
manage the cryptographic keys between
the involved nodes. We have proposed
a nov el approach for establishing
and/or refreshing symmetric cryptographic
keys between two CAN devices in a
plug-and-play manner, exploiting special
properties of the CAN bus. The proposed
scheme requires only the simultaneous
exchange of random bit sequences along
with an appropriate interpretation of the
resulting effective bit sequence on the bus.
Therefore, it is of very low complexity and
may be readily implemented and integrated
in practical systems. Even though it
certainly cannot address all existing security
challenges, it has the potential to become
a major building block for secure CAN
communication in future. Also, it should
be noted that exactly the same concept
may also be used in conjunction with other
bus systems having similar properties as
CAN. Apart from all CAN derivatives, such
as TTCAN or CAN FD, this includes the
LIN- and I2C-bus, for example.

As a next step, the basic idea has to be
embedded in a larger framework, including
suitable protocols and mechanisms for
synchronized frame transmissions between
Alice and Bob, the establishment of group
keys, the generation of keys of arbitrary
lengths and the like. Furthermore, a first
practical proof-of-concept demonstration
is planned. In general, however, no major
showstoppers are expected in this respect.

iCC 2015 CAN in Automation

06-14

Dr.-Ing. Andreas Mueller
Robert Bosch GmbH
Corporate Sector Research and Advance
Engineering (CR/AEH4)
Robert-Bosch-Campus 1
DE-71272 Renningen
Tel.:	 +49-711-811-20836
andreas.mueller21@de.bosch.com
www.bosch.com

Timo Lothspeich
Robert Bosch GmbH
Automotive Electronics (AE-BE/EKE)
Mittlerer Pfad 9
DE-70499 Stuttgart
Tel.: +49-711-811-34016
timo.lothspeich@de.bosch.com

References
[1]	 C. Miller and C. Valasek, “Remote

exploitation of an unaltered passenger
vehicle”, in Proc. Black Hat USA, Aug.
2015.

[2]	 T. Fox-Brewster, “SPY car act hopes to
save American cars from digital disaster”,
Online: http://www.forbes.com/sites/
thomasbrewster/2015/07/21/senators-
launch-spy-car-act/, Forbes, Jul. 2015.

[3]	 S. Checkoway, D. McCoy, B. Kantor, D.
Ander-son, H. Shacham, S. Savage, K.
Koscher, A. Czeskis, F. Roesner and T.
Kohno, “Compre-hensive experimental
analyses of automotive attack surfaces”, in
Proc. USENIX, Aug. 2011.

[4]	 K. Koscher, A. Czeskis, F. Roesner, S.
Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham and
S. Savage, “Exper-imental security analysis
of a modern automo-bile”, in Proc. IEEE
Symp. Security and Privacy, May 2010.

[5]	 J. Petit and S. E. Shladover, “Potential
cyberat-tacks on automated vehicles”,
in IEEE Trans. Intelligent Transportation
Systems, vol. 16, no. 2, pp. 546 – 556, April
2015.

[6]	 C.-W. Lin and A. Sangiovanni-Vincentelli,
“Cyber-Security for the Controller Area
Network (CAN) Communication Protocol”,
in Proc. 2012 Int. Conference on Cyber
Security, June 2012.

[7]	 B. Glas, J. Guajardo, H. Hacioglu, M. Ihle,
K. Wehefritz and A. Yavuz, “Signal-based
automo-tive communication security and its
interplay with safety requirements”, in Proc.
escar Eu-rope, Nov. 2012.

[8]	 W. Diffie and M.E. Hellman, “New
directions in cryptography”, in IEEE
Transactions on Infor-mation Theory, vol.
22, pp. 644-654, Nov. 1976.

[9]	 A.J. Menezes, P.C. van Oorschot, and
S.A. Vanstone, “Handbook of applied
cryptography”, CRC Press, October 1996.

[10]	H. Krawczyk, M. Bellare, and R. Canetti,
“HMAC: keyed-hashing for message
authenti-cation”, RFC 2104, IETF, Feb.
1997.

[11]	S. Bellovin and R. Housley, “Guidelines
for cryptographic key management”, RFC
4107, IETF, Jun. 2005.

