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Plug-and-secure communication for CAN

Andreas Mueller, Timo Lothspeich, Robert Bosch GmbH

Security is a topic of rapidly increasing importance in both automotive as well as in-
dustrial applications. This is driven by the current trend towards ubiquitously con-
nected systems, a higher degree of automation, and the increasing openness of sys-
tems, with a multitude of interfaces and APIs that an attacker might use for malicious 
purposes. In today’s systems, the communication via CAN is often insecure. Although 
suitable concepts and cryptographic algorithms are basically available, the distribu-
tion of the required (symmetric) cryptographic keys between the involved nodes is still 
challenging. Currently, the key establishment comes along with either a high lo-gistical 
/ organizational effort or high complexity and/or costs. For that reason, we propose a 
novel approach for establishing and refreshing symmetric cryptographic keys between 
different nodes in a CAN network in a plug-and-play manner. Our ap-proach captivates by 
its simplicity, low complexity and high cost-efficiency, and may be readily implemented 
without any modifications of standard CAN controllers.

Introduction

The recent trend towards ubiquitously 
connected systems – be it cars, factories or 
buildings – does not only come along with 
numerous opportunities and benefits, but 
imposes also serious new security threats 
with a potentially huge impact. If everything 
is interconnected with each other and with 
more and more interfaces and APIs being 
introduced in order to facil-itate innovative 
services and applications, also the attack 
surface for malicious ma-nipulations and 
intrusions is increasing significantly. Without 
proper countermeas-ures, hackers may 
easily take over the remote control of a car, 
eavesdrop on con-fidential production data 
or manipulate a building automation system, 
for instance. 

The fact that this is not just a purely theo-
retical threat, but rather a real and serious 
menace, is reflected by various prominent 
attacks that have been performed and 
published only recently. In [1], for example, 
the authors have managed to remotely 
inject messages on the CAN bus of a Jeep 
Cherokee (and thus affect important phys-
ical systems, such as steering or braking) 
by exploiting various security flaws and 
connecting to the vehicle via a mobile net-
work. This led to recall of about 1.4 million 
cars and fueled legislative initiatives to 

mandate car manufacturers to support 
reasonable measures to protect cars 
against hacking attacks [2]. Further securi-
ty leaks and successful attacks on cars 
and other vehicles have been reported in 
[3] - [5], for example. One of the reasons 
why especially remote attacks are so rele-
vant and threatening is the fact that these 
attacks may easily scale and that hackers 
do not even need physical access to the 
system under attack. For instance, imag-
ine a scenario with thousands of cars be-
ing remotely hijacked and hackers taking 
control of them. Then, they may precipitate 
a breakdown of the whole traffic infrastruc-
ture of a city or country by manipulating all 
cars in a coordinated manner. Clearly, this 
may not only lead to a tremendous physi-
cal damage, but also to a significant im-
pact on the whole economy and society. 
Therefore, the support of appropriate se-
curity mechanisms represents without doubt 
a crucial prerequisite for the success and 
acceptance of any connected system.

A solid and robust security concept gener-
ally covers many different aspects and 
represents a multi-stage approach, which 
combines different components. Usually, 
this includes things like security-aware 
development processes, fine-grained ac-
cess control mechanisms and policies, the 
use of cryptographic methods as well as  
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associated key management procedures. 
In automotive networks – which we will 
focus on in the following, even though our 
approach is readily applicable to many 
other systems as well – a secured com-
munication on CAN represents a particu-
larly important building block in this re-spect 
since a compromised CAN network may 
have a direct impact on passenger or other 
people’s safety. This is because CAN is 
typically used for interconnecting all kinds of 
sensors and actuators, e.g., for powertrain 
or chassis subsystems. Today, however, the 
communication on CAN is mostly completely 
insecure. Even though suitable concepts 
and algorithms are basi-cally available (such 
as tailored approach-es for authenticating 
or encrypting CAN messages [6], [7]), they 
are not used in practice yet as various other 
challenges still remain open. Among other 
things, this includes proper standardization 
across different OEMs and suppliers, but 
also efficient approaches for establishing, 
re-freshing and managing the cryptographic 
keys that are required for the involved 
cryptographic schemes. In this paper, we 
therefore propose a novel approach ad-
dressing the latter aspect, which is able to 
establish and refresh symmetric crypto-
graphic keys between two nodes in a CAN 
network in a plug-and-play manner. To this 
end, special properties of the CAN physi-
cal layer are exploited and the approach 
captivates by its simplicity, low complexity 
and high cost-efficiency. Moreover, it may be 
readily implemented with no or only minor 
extensions to standard CAN control-lers. It is 
particularly suitable to enhance the security 
against remote (and thus scalable) attacks 
and thus may become an important building 
block for secure com-munication on CAN. 

The remainder of this paper is structured 
as follows: In Section II, we outline our 
system and attacker model, followed by a 
review of existing approaches to CAN se-
curity in Section III. Our novel approach for 
establishing and refreshing cryptographic 
keys based on special CAN properties is 
then presented in Section IV. In Section V 
and VI, we discuss certain implementation 
aspects and elaborate on various security 
considerations, before concluding the paper 
with a short summary in Section VII. 

System and attacker model

In the following, we always consider a set-
up as depicted in Figure 1. Two devices 
(Alice and Bob) are connected to the same 
CAN bus segment and want to establish a 
pair of symmetric cryptographic keys. Af-
terwards, they may then use these keys 
for encrypting and/or authenticating any 
messages exchanged between them. In 
addition, however, there may also be a 
potential attacker (Eve) connected to the 
same bus segment, which tries to deter-
mine or influence the keys to be estab-lished 
between Alice and Bob. In this re-gard, we 
make the following assumptions on Alice, 
Bob and Eve:
	 1)	 All nodes have a similar setup, made 

up of a CAN transceiver, a suitable 
CAN controller, as well as a micropro-
cessor running the actual application 
software. 

	 2)	 Eve is the victim of a remote attack in 
the sense that the original software 
running on that node has been re-
placed by a modified (malicious) soft-
ware.

	 3)	 Eve may eavesdrop on all messages 
exchanged on the CAN bus. Further-
more, she may inject arbitrary (single) 
bits on the bus, e.g., by bypassing the 
CAN controller and directly accessing 
the CAN transceiver from the malicious 
software running on the device. 

 
Figure 1: Considered system model

A major challenge in general is to make 
sure that even if one device has been 
suc-cessfully attacked (here: Eve), the 
impact on the overall system can be kept 
to a minimum. In the previously mentioned 
attack on a Jeep Cherokee, for example, 
first of all the head unit has been success-
fully compromised [1]. With proper security 
mechanisms in place (e.g., proper mes-
sage authentication), it would not have been 
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possible for the head unit to control safety-
relevant functions, such as the brakes 
of the car, by injecting CAN mes-sages 
that it actually is not allowed to transmit. 
However, this is only possible as long as 
the cryptographic keys of the legit-imate 
nodes (here: Alice and Bob) remain secret. 
Therefore, Eve naturally must not be able to 
determine and/or influence the-se keys. 

Review: Security for CAN networks

The protection of the integrity of a mes-sage 
and the assurance of the authenticity of its 
sender should generally be among the top 
security goals in CAN-based net-works as 
CAN is widely used for control-ling physical 
systems or processes with a potential direct 
impact on safety. There-fore, unauthorized 
manipulations have to be prevented or they 
should at least be detectable. Confidentiality, 
in contrast, is considered to be only of 
secondary im-portance and may be useful 
for making it harder for an attacker to learn 
the current system state or for delivering 
critical soft-ware updates, for example. 

In principle, all these security goals could 
be achieved in exactly the same way as in 
the conventional IT world (e.g., using digi-
tal signatures, message authentication 
codes, etc.), but for optimal performance the 
specific constraints of CAN-based networks 
should be properly taken into account. This 
includes things like the lim-ited data rate and 
message sizes, for ex-ample, as well as the 
limited computational power and memory 
of many CAN devices. Therefore, in [6] and 
[7] several security mechanisms specifically 
optimized for CAN have been proposed, 
which take the-se specific constraints 
into account. In this regard, symmetric 
cryptographic schemes turn out to be the 
basis for most of the proposed schemes due 
to their limited computational complexity 
and bandwidth requirements. The use of 
symmetric cryp-tography, however, requires 
the availability of symmetric (i.e., identical) 
keys at the involved nodes and the distribution 
/ estab-lishment of these keys represents a 
major challenge. Possible options include a 
manual distribution of keys, e.g., at the end 
of a production line. This, however, involves 
a considerable (organizational) complexity 

and reaches its limitations if one or several 
devices have already been compromised 
before being integrated into the network 
(for example due to an attack performed 
at the supplier). Besides, an automated 
refreshment of keys cannot be realized this 
way. An alternative approach that has been 
actively discussed and con-sidered in recent 
years is to use key estab-lishment schemes 
based on asymmetric cryptography for that 
purpose, such as the Diffie-Hellman key 
exchange protocol [8], [9]. Major drawbacks 
of this approach are the high computational 
complexity as well as the comparatively large 
amounts of data that have to be exchanged 
between two nodes in order to set up a 
(secure) symmetric key. Besides, it should 
not be forgotten that the security of the 
Diffie-Hellman key exchange relies only on 
the difficulty to efficiently solve the discrete 
logarithm problem on finite fields or elliptic 
curves using state-of-the-art methods. 
Therefore, the approach may become in-
secure from one day to the other if ade-
quate progress is made in this respect. This 
could be the advent of a high perfor-mance 
quantum computer, for example. 

In the next section, we therefore propose a 
novel approach for establishing symmetric 
cryptographic keys between two nodes (or 
to be more precise: an approach for estab-
lishing a shared secret, based on which 
symmetric keys can be derived), whose 
security does not rely on hard mathemati-
cal problems, but rather on physical prop-
erties of the CAN bus. Furthermore, it has 
an extremely low complexity, low band-
width requirements and may be readily 
implemented in practical systems. Finally, it 
may also be used for efficiently refresh-ing 
already established keys, thus making it a 
very useful and promising building block for 
future secure CAN networks. 

CAN-based key establishment

The basic idea of our approach is that Alice 
and Bob agree on a shared secret / key by 
means of a public discussion using standard 
CAN messages. In particular, both nodes 
simultaneously transmit ap-propriate CAN 
frames, so that Eve is only able to see the 
superposition of both mes-sages, without 
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knowing the exact content of each of them. 
However, since Alice and Bob themselves 
know what they have transmitted and 
since they can see the superposition of 
both messages as well, they may readily 
conclude what the re-spective other peer 
has transmitted and thus establish a shared 
secret that is not known to Eve. 

For the concrete realization, we rely on the 
characteristic property of the CAN bus that 
bit ‘0’ is dominant and bit ‘1’ is recessive, 
which represents also the basis for the 
classical bus arbitration. In fact, if Alice and 
Bob simultaneously transmit a certain bit (as 
required for our approach), there are in total 
four different cases that may occur. These 
are put together in Table 1. Clearly, if one of 
the two nodes transmits a dominant bit (‘0’), 
also the effective bit on the CAN bus is a ‘0’ 
and only if both nodes transmit a recessive 
bit (‘1’), we also have the recessive state 
after the superposition on the CAN bus. 
Therefore, the CAN bus may be considered 
as a logical AND func-tion of the individually 
transmitted bits. 

Table 1: Possible combinations of dominant 
and recessive bit transmissions

Alice Bob Effective Bit 
on CAN Bus

0 0 0
0 1 0
1 0 0
1 1 1

The actual procedure for agreeing on a 
shared secret between Alice and Bob is a 
multi-step approach as follows:

Example (for N = 10):
RAlice = 0 1 1 0 1 0 0 1 0 1
RBob  = 1 0 1 1 0 1 0 1 1 0 

Example:
   SAlice	 = 01 10 10 01 10 01 01 10 01 10 
   SBob	 = 10 01 10 10 01 10 01 10 10 01

Example:
    Seff = 00 00 10 00 00 00 01 10 00 00

Clearly, Eve may easily determine this bit 
sequence as well by means of simple pas-
sive eavesdropping on the channel. There-
fore, it does not really help us further, yet.

Example: In Seff given above, there is a ‘1’ 
in tuples number 3, 7 and 8 (assuming that 
we start counting the tuples with 1). 

 
Example: Based on the outcome of step 
4, Alice and Bob have to delete the bits at 
positions 3, 7 and 8 in their original bit se-
quences RAlice  and RBob . Hence, we get:

   KAlice	 = 0 1 1 0 1 0 0 1 0 1	 = 0 1 0 1 0 0 1
   KBob	 = 1 0 1 1 0 1 0 1 1 0	 = 1 0 1 0 1 1 0

Please note that this is done because 
whenever the effective bit on the CAN bus 
is a ‘1’, it is clear that both Alice and Bob 
must have transmitted a ‘1’. Likewise, since 
the two bits in a tuple are always inverse to 
each other (cf. step 2), it is also clear that 
both nodes must have transmit-ted a ‘0’ for 
the other bit in that case. However, exactly 
the same conclusion can also be drawn by 
Eve and therefore the tuples including a ‘1’ 
do not provide any usable information for us 
as no secrecy is contained. For that reason, 
these bits are simply removed from Seff .

1)	 Alice and Bob generate independently  
	 of each other random bit strings RAlice  
	 and RBob of a pre-defined length N.

2)	 Alice and Bob extend these random bit  
	 sequences in such a way that after each  
	 bit the corresponding inverse bit is  
	 inserted, leading to the modified bit  
	 sequences   and SBob of length 2N. 

3)	 Alice and Bob simultaneously  
	 transmit the bit sequences SAlice and  
	 SBob, leading to the superimposed  
	 (effective) bit sequence Seff on the  
	 CAN bus, which is given as Seff = SAlice  
	 AND SBob  

4)	 Alice and Bob determine all tuples in Seff  
	 which include a ‘1’. 

5)	 Alice and Bob delete the bits in their  
	 original random bit sequences RAlice and  
	 RBob corresponding to the tuples which  
	 included a ‘1’ as determined in step  
	 4. The result are two shortened bit  
	 sequences, denoted as KAlice and KBob. 
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Clearly, what remains after step 5 are the bits 
that are different in the initial bit strings RAlice 
and RBob. When simultaneously transmitting 
SAlice and SBob, we always get ‘00’ for the 
tuples corresponding to these bits. Hence, 
by eavesdropping on Seff, Eve only knows 
that Alice and Bob have inverse bits in their 
original random bit sequences RAlice and RBob 
at that position, but she is not able to tell 
which one has the zero and which one has 
the one. Alice and Bob, in contrast, know 
which bit they have transmitted themselves, 
they can also conclude that the respective 
other peer has transmitted the inverse bit 
by evaluat-ing Seff and therefore they have 
a clear advantage compared to Eve. Thus, 
KAlice and KBob are unknown to Eve, but are 
known by Alice and Bob. 

Discussion

With the proposed scheme it is possible 
to establish a shared secret between Alice 
and Bob by means of a simple public  
discussion, i.e., by simply transmitting and 
receiving CAN frames and interpreting the 
superimposed frames on the bus in the right  
way. Consequently, the involved complexity 
is extremely low, especially compared to 
existing key establishment schemes, such 
as the Diffie-Hellman key exchange protocol. 
Yet, it may be done in a fully automated 
manner and is thus clearly superior 
compared to the manual distribution of keys.

The concrete integration of the core idea 
in a full-blown solution with suitable proto-
col mechanisms is still ongoing work and 
not elucidated in more detail here due 
to space constraints. In particular, for a  
complete solution additional mechanisms are 
required, e.g., for triggering the synchronized  
transmission of Alice and Bob, for initiating 
the whole procedure, and for somehow 
addressing the involved nodes, for example. 
In general, however, we do not expect any 
showstoppers in this respect and for most 
aspects solid ideas are already available. 

In a practical realization, the simultaneous 
transmission of the bit strings SAlice and 
SBob preferably would be done in the pay-
load part of a CAN frame, thus represent-
ing a deviation from standard CAN, where 
simultaneous transmissions may only 
oc-cur during the arbitration phase when 
transmitting the CAN identifiers. With 
some other smart ideas, however, it is still 
possible to implement the proposed in such 
a way that other noninvolved nodes (apart 
from Alice and Bob) see always valid CAN 
frames on the bus (even with superimposed 
random bit strings in the payload field) and 
therefore would not trig-ger the transmission 
of any error frame. This will be presented 
in more detail in the next section. What is 
important to note, though, is that the number 
of payload bits in a CAN frame is limited 
to 64 bits in case of standard CAN and  
512 bits in case of CAN FD. Furthermore, the 
length of the effective shared secret that we 
can gener-ate with one run of the proposed 
proce-dure for a given length N of the initial 
random bit strings RAlice and RBob is not  
constant, but depends on how many values 
in RAlice and RBob are equal. Clearly, this 
may vary between zero and N, with an  
expected value of N/2. Since in step 2 the 
initial random sequences are extended by a 
factor of two by inserting always the inverse 
bit after each bit and since all these 2N bits 
have to be transmitted over the CAN bus, 
the overall efficiency ρ, which relates the 
length of the usable shared secret after one 
round of the proposed approach (given by 
the length of KAlice and KBob, respectively) to 
the number of required bits to establish this 
shared secret (given by 2N) is generally 
given by

0 ≤ ρ ≤ ½,                     (1)

with an expected value of E[ρ] = ¼. This 
means that on average four payload bits have 
to be simultaneously transmitted by Alice 
and Bob in order to establish one secret bit. 
Since for achieving state-of-the-art security 
usually symmetric keys of length 128 bit or 
even 256 bit are required, it is quite clear that 
for both standard CAN and CAN FD a single 
run of the proposed approach is generally 
not enough to gen-erate a sufficient number 
of secret bits. Therefore, also for addressing 
this issue suitable protocol mechanisms 

6)	 The resulting (shortened) bit sequence of 
Alice (KAlice) is now exactly the in-verse of the 
corresponding bit se-quence of Bob (KBob), 
which eventually is the established shared 
secret. 
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are required, which ideally would enable 
the generation of keys of arbitrary length. 
This may be done by repeatedly performing 
the proposed procedure and combining the 
secret bits generated during each run in an 
appropriate way.

Another very promising application of 
the our approach is to use it not just for  
generating full keys of 128 of 256 bits length, 
but for periodically refreshing existing keys. 
This is generally beneficial in order to limit 
the time during which a certain key is used 
or equivalently the number of messages 
that are secured using one par-ticular key. 
By doing so, certain attacks become more 
difficult (e.g., plain-text at-tacks) and the 
potential damage in case that a particular 
key is revealed at some point in time can be 
limited. Therefore, periodic key refreshment 
is a highly rec-ommended security practice 
in general, see for example [10] and [11]. 
For refreshing a key, however, already a 
limited number of secret bits is sufficient as 
they may be combined with the old key in an 
appropriate way. This may be done by using 
a cryptographic hash function, for example. 
Hence, the proposed procedure may be 
regularly inserted into the regular CAN 
communication in order to generate new 
shared secret bits and to refresh the used 
keys accordingly for increasing the securi-ty 
level. The periodicity of the key re-freshment 
may be adaptively adjusted depending on 
the respective needs, thus making it a very 
flexible and powerful solution in practice.
Finally, it should be noted that CAN is a 
multicast-based communication protocol 
and messages transmitted by one node 
generally have to be received by multiple 
nodes. This implies that in many cases 
not only the communication between two 
nodes has to be secured, but rather the 
communication between groups of several 
nodes. Hence, cryptographic schemes for 
message authentication, encryption, etc. 
may only be reasonably applied in these 
cases if all devices belonging to a certain 
group are in possession of the same 
cryptographic key. The procedure proposed 
in this paper, however, cannot be extended 
to a multi-node setup in a straightforward 
manner. Nevertheless, there are still 
several possibilities how so-called group 

keys may be established. In the simplest 
case, all nodes of a certain communication 
group could establish a pairwise key with 
one particular node of that group (e.g., a  
gateway node), and then this node may 
generate a suitable group key and signal 
it to all nodes of the group in a secure 
manner using the previously established  
pairwise keys. 

Implementation aspects 

As already outlined in the previous section, 
the bit strings SAlice  and SBob are preferably 
transmitted in the payload field of a CAN 
frame. Without any additional measures, 
however, this may lead to problems and/or 
compatibility issues in practical realization. 
In particular, with a direct implementation of 
the proposed approach, the superimposed 
CAN frame on the bus may violate the bit 
stuffing rule since even if the individual bit 
strings SAlice  and SBob  adhere to this rule, 
it cannot be assured that this is also the 
case for the effective bit string Seff on the 
bus. For example, if SAlice = 01010101 and  
SBob = 10101010, both strings would be valid, 
but Seff = SAlice AND SBob = 00000000 would 
clearly vio-late the bit stuffing rule. Hence, 
other nodes may generate an error frame 
if they observe such a violation on the bus 
and clock resynchronization may become 
more difficult. A relatively simple solution to 
fix this problem is to insert a fixed bit change 
(‘01’ or ‘10’) in both SAlice and SBob after each 
sequence of at most four bits. This way, 
Alice and Bob would always transmit the 
same two bits at this position and since the 
two bits include a bit change, the bit stuffing 
rule is never violated in the error-free case. 
However, this would come at the cost of a 
higher overhead, of course. Alternatively, 
Alice and Bob could determine on-the-fly 
when it is necessary to insert a stuff bit. 
In fact, both nodes have to read back the 
effective bit sequence Seff anyway and 
thus they could check in real-time if there 
have been five identical bits effectively on 
the bus and dynamically insert the inverse 
bit after-wards in that case. Compared  
to the first solution, the additional overhead 
would be significantly lower, but in return  
the complexity and processing requirements 
are somewhat higher. 
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A similar problem occurs with the cyclic 
redundancy check (CRC) field of a CAN 
frame in case of a direct implementation 
of the proposed approach. Since Seff de-
pends on both SAlice and SBob, the valid 
value for the CRC field of the effective 
message on the bus would generally not 
be equal to the superimposed CRC fields of 
the messages transmitted by Alice and Bob 
in case that they calculate the CRC field 
in such a way that the transmitted frames 
are valid. In order to solve this issue and  
thus assure full backwards compatibility to 
standard CAN, the correct CRC value that 
matches to the effective CAN frame on 
the bus could also be cal-culated by both 
nodes on the fly and then be appended to 
that frame after the payload field. While 
making sure that the effective frame on the 
bus is a valid CAN frame (based on existing 
specifications), it has the nice side effect 
that this procedure would automatically 
help to make sure that both Alice and Bob 
have received the same effective bit string 
Seff (which is essential for deriving the 
same shared secret). This is because if 
one of the two nodes has received at least 
one erroneous bit but the other one hasn’t, 
they would append different CRC fields in 
general, which may be detected by one of 
the nodes if a recessive bit is overwritten by 
a dominant one. 

With the previously described approaches 
for dealing with bit stuffing violations and 
the CRC field, it is possible to achieve full 
backward compatibility in the sense that all 
frames on the CAN bus are always in line 
with the existing specifications – at least in 
the error-free case. Hence, smooth migra-
tion paths become possible, where not all 
nodes connected to a CAN bus necessarily 
have to support the proposed approach and 
existing hardware / software may widely be 
reused. A practical implementation may be 
done solely in software (using CAN/GPIO 
repinning, for example, and thus directly 
accessing the CAN transceiver from the 
microprocessor) or hardware-assisted, 
where an additional hardware module 
may take care of the specific requirements 
of the proposed approach, such as the 
synchronized transmission of Alice and 
Bob. In this regard, we envision flexible 

implementation options, where existing CAN 
controllers taking care of the regular CAN 
communication do not have to be modified 
at all as long as they are supplemented 
by an additional (light-weight) hardware/ 
software module.

Security considerations

If Eve as modeled in Section II is only 
passively eavesdropping on the CAN bus, 
she is not able to readily determine the 
established shared secret bit sequences 
KAlice or KBob. As already outlined in Section 
IV, she just knows that the remaining 
bits were different for both nodes,  
but – unlike Alice and Bob – cannot tell 
who has transmitted the zero and who the 
one. If, in contrast, Eve is trying to perform 
an active attack, for example by sending 
additional own bits during the exchange of 
SAlice and SBob between Alice and Bob, 
there are two different possibilities that have 
to be considered:

	 1)	 Eve is transmitting a recessive bit
	 2)	 Eve is transmitting a dominant bit

Transmitting a recessive bit is no different 
from not transmitting at all since a reces-
sive bit does not change the effective state 
on the CAN bus. Therefore, we only have 
to analyze what Eve might do by superim-
posing another dominant bit to the bits 
exchanged between Alice and Bob. To this 
end, it is important to remember that with the 
procedure proposed in Section IV only those 
bits remain in the final shared secret for 
which the effective bit on the CAN bus was 
‘0’ for both the transmission of the original 
and the inverse bit (cf. step 5). Moreover, if 
Eve transmits a dominant bit, she cannot tell 
what the status on the CAN bus would have 
been without her transmission. Therefore, 
we may conclude the following:

Conclusion 1: An active Eve may disturb our 
procedure in such a way that the gen-erated 
secret bit strings KAlice and KBob are actually 
not equal on both sides. In order to be able 
to detect such cases, therefore additional 
mechanisms should be intro-duced, with 
which Alice and Bob can verify that they 
have really generated the same secret bit 
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sequences KAlice and KBob. This could be 
done by calculating and exchanging a hash 
value of these bit sequences, for example. 

Conclusion 2: An active Eve is not able to 
enforce the generation of a particular shared 
secret between Alice and Bob (which she 
then would be aware of) and/or to learn the 
shared secret that is established between 
both nodes. This is because KAlice and 
KBob depend not only on Seff (which may 
be determined and influenced by Eve), but 
also on the bits of RAlice and RBob, which are 
unequal on both sides, and Eve has no way 
to determine these bits. 

Conclusion 3: An active Eve may easily 
perform a denial-of-service attack by 
completely preventing the establishment of 
a shared secret, for example by continuously 
sending a dominant bit. However, this threat 
exists basically for any scheme since an 
active Eve may easily block any CAN 
communication on the bus. In this case, the 
fail-safe mode of all devices should prevent 
any serious safety-critical impact. 
 
If we deviate from the attacker model 
introduced in Section II and consider not 
only remote attacks, but also attacks with 
direct access to the CAN bus (e.g., using 
own high-end equipment), the situation 
is getting more challenging. Without any 
further ado, a passive eavesdropper might 
be able to determine the shared secret 
established between Alice and Bob in this 
case by analyzing the voltage levels on the 
CAN bus, for example. This is because for 
fixed positions of Alice, Bob, and Eve, the 
volt-age level that Eve can observe on the 
bus may be different depending on whether 
Alice is transmitting a dominant bit and 
Bob a recessive one or vice versa. For the 
remote attacker case, this was not an is-
sue since she may only access the CAN 
bus via a standard CAN transceiver, which 
regenerates the voltage levels. A remedy 
could be to artificially introduce a random 
jitter in the transmit voltage levels of Alice 
and Bob (within the allowed ranges), so 
that Eve can no longer conclude who has 
transmitted which bit. It should also be 
noted, however, that with direct (physical) 
access to the CAN bus, an attacker might 

manipulate a car with much less effort, 
e.g., by simply cutting through a cable or 
manipulating the brakes. Nevertheless, a 
more detailed analysis of potential attacks 
with direct physical access to the CAN bus 
as well as possible countermeasures is part 
of our future work.
 
Conclusion and way forward

Security will play a crucial role for the 
success and widespread acceptance of 
connected systems, such as connected 
cars and other vehicles. A major challenge 
in this regard is how to distribute and 
manage the cryptographic keys between 
the involved nodes. We have proposed 
a nov  el approach for establishing  
and/or refreshing symmetric cryptographic 
keys between two CAN devices in a  
plug-and-play manner, exploiting special 
properties of the CAN bus. The proposed 
scheme requires only the simultaneous 
exchange of random bit sequences along 
with an appropriate interpretation of the 
resulting effective bit sequence on the bus. 
Therefore, it is of very low complexity and 
may be readily implemented and integrated 
in practical systems. Even though it 
certainly cannot address all existing security 
challenges, it has the potential to become 
a major building block for secure CAN 
communication in future. Also, it should 
be noted that exactly the same concept 
may also be used in conjunction with other 
bus systems having similar properties as 
CAN. Apart from all CAN derivatives, such 
as TTCAN or CAN FD, this includes the  
LIN- and I2C-bus, for example. 

As a next step, the basic idea has to be 
embedded in a larger framework, including 
suitable protocols and mechanisms for 
synchronized frame transmissions between 
Alice and Bob, the establishment of group 
keys, the generation of keys of arbitrary 
lengths and the like. Furthermore, a first 
practical proof-of-concept demonstration 
is planned. In general, however, no major 
showstoppers are expected in this respect.
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