
iCC 2017 CAN in Automation

04-12

Reducing CAN latencies by use of weak
synchronization between stations

Hugo Daigmorte1, Marc Boyer1, Jörn Migge2

1ONERA, Université de Toulouse, France
2RealTime-at-Work, France

1.	Introduction
	 1.1 Context

Controller Area Network (CAN) is a serial
communication bus network that was initially
developed for automotive applications in the
mid 90s. Due to the many advantages of
CAN, including its high reliability and cost
effectiveness, it has found application in other
industries. Real-time distributed applications
increasingly use CAN for transmitting real-
time information. These applications often
require to respect temporal constraints and
so to bound the communication latencies
of the frames, also called the worst case
response times (WCRT).

It is well known (e.g., see [9]) that the use
of offsets reduces frame response times
and increases the possible bus utilization
level. Indeed, offsets allow the workload to
be better balanced over time which reduces
contention for the bus access and, as a
result, decrease the frame response times
and allow a better bandwidth utilization.
However implementing offsets requires a
clock. In distributed systems there are two
main solutions: all nodes share a global
clock or each node has its own local clock.
In both cases, each message is sent at an
certain offset with regard to a clock.

Scheduling frames with offsets has been shown in the literature to be very beneficial
for reducing response times in real-time networks because it allows the workload
to be better spread over time and thus to reduce peaks of load. Maintaining a global
synchronization amongst the stations induces substantial overhead and complexity in
networks not providing a global time service such as CAN. Indeed, on CAN, a global
clock is rarely implemented in practice and each station possesses its own local clock.
Without a global clock, the de-synchronization between the streams of frames created
by offsets remains local to each station and thus less efficient. In a previous paper [1],
we developed a method to compute latency upper bounds for set of messages with
offsets when the inter-node synchronization is not perfect. On a simplified test case,
we obtained a reduction of 65% of the delay using a clock accuracy of only 1ms. In this
article, we extend the method to consider a realistic case study (mixing periodic and
asynchronous flows, considering errors and tacking into account the synchronization
protocol).

Figure 1: Schedule example with a global clock

iCC 2017 CAN in Automation

04-13

Weak synchronization
	 1.2 Weak synchronization

In case of global clock all nodes have (up
to a certain precision) the same clock value,
and with the proper time-triggered frame
schedule no contentions occur, neither
between the flows from the same node, nor
from different nodes. However global clock
requires synchronization mechanisms, and
the clock precision must be much smaller
than the sending time of one frame such
that there is no contention. An example of
such a schedule is given in Figure 1. A time
slot is dedicated to each message, and no
contention occurs between the flows A, B, C.

In case of local clocks, the scheduling
remains local. Using local clocks avoids
the contentions between flows from the
same node, and reduces the contentions
between flows from different nodes. Two
example schedules are given in Figure 2.
Contentions between flows A and B from

node 1 cannot happen. However
contentions between flows from different
nodes can happen: between A and C
(upper case) and between B and C (lower
case). Nevertheless, offsets with local
clocks create some traffic shaping and
reduce contentions between nodes: C can
be delayed by at most A or B but never
both of them.

We introduce the notion of bounded
phases as a trade-off between global clock
and local clocks: a system with a global
clock but a weak precision, that can also
be seen as a system with local clocks,
where the phases between the clocks are
bounded. The phases between nodes is
not perfectly known but bounded, and
some contentions can be avoided. An
example schedule is shown in Figure 3.
Like in the case of local clocks, no
contention will occur between the flows A
and B. But if the phase (x) between N1
and N2 is small enough, no contention can

Figure 2: Schedule examples with local clocks

Figure 3: Schedule example with bounded phases

iCC 2017 CAN in Automation

04-14

Figure 4: Example of scheduling using Major and Minor Time Frame

occur between flows B and C. This shows
that it is possible to benefit from some of
the advantages of a global clock with fewer
constraints on the synchronization between
nodes.
	
	 1.3 Contribution

We have shown in [1] that important
gains with respect to the communication
latencies can be achieved if we implement
bounded clock de-synchronization. For the
sake of understanding, some simplifications
were done in [1]:

•	 the traffic associated to the synchronization
	 mechanism had not been considered,
•	 no event-triggered traffic was considered,
•	 only standard CAN 2.0A was considered,
•	 transmission errors were not taken into
	 account.

In this article, we propose to show an
acceptable synchronization mechanism,
how this method can be used in a context
mixing asynchronous flows and periodic
flows with offsets, how to take into account
CAN FD traffic and how errors can be
considered.

2.	Computing an upper bound with
	 network calculus

Network calculus is a theory to derive
deterministic upper bounds on the
communication latencies in networks. In
[6] it has been shown that application of
Network Calculus can bound the worst
case response times for CAN bus. In
network calculus, input and output flows of
data are modeled by cumulative functions
which represent the amount of data
produced by the flow up to time t. The servers

are just relations between some input and
output flows, a server S receives an arrival/
input flow, A(t), and delivers the data after
some delay, it is the departure/output flow,
D(t). We always have the relation D ≤ A,
meaning that data can only go out after their
arrival.

However the exact input/output data flows
are in general unknown at design time,
or too complex, and the calculus of these
cumulative functions cannot be obtained.
Nevertheless, the evolution of input/output
data flows can be determined considering
contracts on the traffics and the services
in the network. For this purpose, Network
Calculus provides the concepts of arrival
curve and service curve, that have been
more widely described in [5].

Definition 1 (Arrival curve): Let A be a flow,
and α be a non decreasing function. Then, α
is an arrival curve for flow A, iff :
	

Definition 2 (Service curve): A server S
offers a strict service β iff for all input/output
A,D and for all busy period (s,t]

 D(t) − D(s) ≥ β(t − s)

Knowing the arrival and the service curve for
a flow and a server it is possible to deduce
a bound for the worst case traversal time.
More details on network calculus can be
found in [5] and for this specific case in [1].

iCC 2017 CAN in Automation

04-15

3.	Contribution
	 3.1	 Synchronization protocol

Several synchronization protocols have
been proposed, but their implementation
on COTS components can be costly,
and the use of dedicated hardware is not
always possible. The one presented in this
section describes an acceptable method.
This method is based on a minor/major
time frame (MIF/MAF) concept where all
the nodes share the same minor/major
time frame period, see Figure 4. At the end
of each Major time frame an idle time of
variable duration exists. Due to hardware
and software latency, it may be hard to start
all MAF at exactly the same time, but it
could be possible to have a bounded phase
between them.
The synchronization protocols that we
envisage is based on a master that sends
a frame at the beginning of the each Major
Time Frame Cycle. This message is then
used by each node on the bus in order to
define a reference point for their own local
clock. This message has to be sent not only
at the beginning of the synchronization but
at every new Major Time Frame because of
the local clocks drifting apart.
However even if every node uses the
same message to define the origin of their
clocks it does not guarantee that they will
be perfectly synchronized. A message
transmission delay can be broken into four
parts: a preprocessing time (Tpre), a waiting
time (Twait), a transmission time (Tx) and
a postprocessing time (Tpost), see Figure
5. And these times may vary for the same
message considering different destination
nodes.

Figure 5: A timing diagram showing time
spent sending a message from a source
node to a destination node. (Fig 2 in [2])

The preprocessing time is the time required
to acquire data from the environment and
encode them into network data whereas the
postprocessing time is the time required to
decode the network data and transmit them to
the environment. These times are unknown
at design and depend on the device software
and hardware characteristics, however they
can be bounded. In this study we use results
presented in [2] and consider that 0,5 ms <
Tpre + Tpost < 1 ms. The waiting time is the
time spent in the queue at the sender buffer.
Even if we consider that our synchronization
messages have the highest priority, CAN
bus use a non-preemptive policy, due to
asynchronous flows this time is unknown at
design. However it is possible to bound it,
in our case we consider that 0 ms < Twait
< 0,5 ms. Finally the transmission time is
the time required to physically transmit the
message on the bus, it depends on the data
rate, the message size and the distance
between nodes. All these values are known
at design time and so this transmission time
can be calculated at design, in our case we
consider Tx = 0,26 ms.

To summarize the time required to send
a message from the master to a slave is
unknown at design and may be different for
each slave, however it is possible to bound
it :
0.76 ms < Tpre+Twait+Tx+Tpost < 1,76 ms

This variable delay will lead to a weak
synchronization between nodes, in our
example for example local clocks of two
different nodes may have at least a difference
of 1ms, this difference between local clocks
will be referred as “phase” thereafter.

Due to clock drift, a new synchronization
message has to be sent periodically at
each Major Time Frame by the master. The
main point is that all the frames scheduled
in a Major time Frame have to be sent
before a node starts the next Major time
Frame. Each node starts a new Major time
Frame when receiving this synchronization
message. This means that the master has
to avoid to send this message too soon, and
so a minimal idle time has to be defined at
the end of the Major time Frame, see
Figure 4.

iCC 2017 CAN in Automation

04-16

Figure 6: Minimal Major time Frame for the
master

First, without considering clock drift, as the
message transmission delay may vary (see
above), the master has to take into account
the worst case. This case is illustrated
Figure 6. In this case the Slave 2 receives
the first transmission frame with the
maximal delay, so it starts its Major frame
time later than Slave 1. The master has to
wait in order to avoid that, if the following
transmission message is sent with the
minimal traversal time, Slave 2 receives
it before the end of its transmissions. The
slave has to receive these messages with
a minimal time between them large enough
to send all the frames. This imposes for the
master a minimum idle time equal to the
maximal phase between the master and
the slave: φmax. In this case it ensures
that all the slaves finish their transmission
before the new major time frame, then
they may have an idle time (Slave 1) or not
(Slave 2).
Secondly, due to clock drift, the accuracy of
the clock: ε, has to be taken into account.
If the clock of the master is faster than the
reference time and the clock of the slave
slower, during a time T, their difference is
bounded by: 2εT.

It lead us to:

	 3.2	 Sporadic/asynchronous flows
	 	 and alarms

The method presented in [1] only considers
periodic flows with offsets: messages are sent
periodically with a known offset. However
in practice many systems also contain
sporadic/asynchronous flows: messages
are sent as soon as specificevents occur,
respecting a minimal duration between two
successive frames. Such transmission can
be triggered by alarms that, by definition,
cannot be scheduled, or for instance the
period of the flows sent by the engine in
automotive networks depends on the engine
frequency. However, in order to be able to
respect timing constraints, asynchronous
flows has a bandwidth limit defined by two
parameters: a minimal duration between two
successive frames, the Minimum Update
Time (MUT), and a maximal frame size.
These parameters can be used to define an
arrival curve and so compute a worst case
response time.

	 3.3	 CAN FD

Figure 7: CAN FD data frame format

The increasing system complexity requires
to increase the bandwidth. The classic
CAN‘s bit rate is limited to 1Mbps due
to its arbitration mechanism for media
access control, and the number of data
per CAN frame is limited to 8 bytes. In
order to overcome these limitations while
keeping most of the software and hardware
unchanged. R. Bosch GmbH introduced in
2012 CAN FD [3] (CAN with Flexible Data-
rate). CAN FD modifies the CAN frame
format by increasing the maximal number
of data bytes per CAN frame up to 64 and
by permitting to switch the bit rate to faster
value inside the CAN frame. In Network
Calculus we are interested in the frame Idle Time ≥ 2ε MAF+ φmax

iCC 2017 CAN in Automation

04-17

size from the point of view of the network,
i.e. the duration of bus occupancy. In order
to represent CAN FD in network calculus,
it is sufficient to consider it as a classical
CAN frame with the same bus occupancy
duration, see Figure 7.
	
	 3.4	 Transmission errors

Real-time distributed applications have often
the obligation to respect stringent temporal
constraints. It may be essential to take into
account of transmission errors in Network
Calculus in order to ensure that time
constraints are respected. Transmission
errors are a random phenomenon, and so
it cannot be forecast. However Tindell and
Burns, in [4], have introduced the idea that
the number of errors can be upper bounded
during a given time period. This upper bound
is characterized by:
•	 Nerror, the burst errors, it is the
	 maximal number of errors that
	 could occur back-to-back
•	 Terror, the residual error period.

The number of transmission errors during
time t is thus:

This result can then be used in Network
Calculus for adapting the service curve. If β is
the service curve without considering errors
then the service curve with transmission
errors is:

Where Lmax is the maximal frame size,
because each errors can lead to the loss
of a complete frame, in the worst-case the
largest frame of the system. And Lerror is
the size of the error frame (23 bytes), see
[10].

5. Case-studies

In order to show the usability of our
method we decide to adapt a real CAN bus
configuration presented in [8].

Figure 8: Distribution of the size of the
data payloads and periods for the tested
configuration.

The system model consists of 6 identical
nodes that are connected to a single CAN
network. There are 69 messages in the
system. Figure 8 shows for the set of frames
the number of flows per period and payload,
as indicated by the size of circle and the
number inside. For example the number 8 in
the right bottom corner means that there are
8 flows with a period of 10ms and a payload
of 8 bytes. The CAN bus data rate is 500 kbps
and its utilization is 60,25 %. In a first step,
we decide to consider the 69 messages as
periodic. The frame offset assignment that
is used in this study is the SOPA algorithm
available in the RTaW-Pegase software
from the company RTaW. SOPA algorithm
has been chosen because our experience
is that it consistently outperforms the few
other offset algorithms available [7][9], and
thus provides us with an estimate of the
best possible gains that can be achieved
in practice with offsets. Moreover we have
supposed that the number of errors can be
upper bounded as explained previously with
Nerror = 2 and Terror = 100 ms.

The first experiment, see Figure 9,
considers that all flows are purely periodic.
In order to evaluate the gain due to the
bounded synchronization we compare the
delay bounds obtained without using offset
and with only local clocks. The results with
phases take into account an additional
flow used to maintain the synchronization
considered with the highest priority. Results
can be compared on Figure 9, and reveal an
average gain of around 53 % compared with

iCC 2017 CAN in Automation

04-18

Figure 9: Delay bounds with only periodic
messages (phase = 1 ms)

a system without offsets and an average
gain of around 22 % compared with a system
with local clocks. For very high priority
frames (1-15) this gain is far lower because
maintaining the synchronization requires to
add a flow which increases the worst case
response time as it will delay the others
flows. However the gains of synchronization
outweigh this disadvantage.

Table 1: Distribution between periodic
and sporadic messages

Periodic Sporadic

Priorities

1-17 50 % 50 %

18-34 75 % 25 %

35-69 100 % 0 %

Part of the load 60 % 40 %

In a second step, we decide to consider
that our systems does not only contain
periodic flows but also sporadic messages.
We consider that sporadic messages
have a higher priority than periodic
messages as they are used for alarms,
so we decide to set as sporadic 50 %
of messages from priority 1 to 17 and
25 % from priority 18 to 34; the rest of the
traffic remains periodic. The distribution is
summarized in Table 1.

It is important to notice that highest priority
flows are also flows with the smallest
period, that is why in this system, more than
40 % of the total load have been changed to
sporadic traffic.

Results are presented Figure 10. For high
priority frames (1-30) the gain of using offsets
is limited because an important part of the
traffic is sporadic, moreover as previously
mentioned there is an additional flow to
maintain the synchronization. However
for frames of low priority (40-75) the gain
due to offset remains very important, 45 %
compared with a system without offset and
17 % compared with a system with local
clocks.

Figure 10: Delay bounds with 40 % of
sporadic messages

6. Conclusion

The major contribution of this paper is to
show the applicability in a realistic case-
study of the new approch presented in [1]:
using bounded clock desynchronization,
which offers a trade-off between a global
clock and local clocks. Using a global clock
requires synchronization mechanisms with
a precision much smaller than the frame
sending time but their implementation on
a COTS can be costly. Using local clocks
does not avoid inter-nodes contentions.
In this paper we propose a simple
synchronization mechanism to establish
a system with bounded phases between
nodes, but results presented also apply
with any of them. We used the method
developed in [1] to bound the delay of CAN
with bounded desynchronization and show
how this method can be used in a context
mixing asynchronous flows and periodic
flows with offsets. Furthermore we have
extended the technique presented in [1] to
take into account errors.

iCC 2017 CAN in Automation

04-19

The experiments have brought insights on
the beneficial impact of bounded phases,
with, on our case-studies, an average delay
reduction of around 50 % when all the traffic
is periodic. Even when an important part of
the traffic is sporadic the used of bounded
phases remains very beneficial.

References
[1]	 DAIGMORTE, Hugo and BOYER, Marc.

Traversal time for weakly synchronized
CAN bus. In : Proceedings of the 24th
International Conference on Real-Time
Networks and Systems. ACM, 2016. p. 35-44.

[2] 	 LIAN, Feng-Li, MOYNE, James, and
TILBURY, Dawn. Network design
consideration for distributed control systems.
IEEE Transactions on Control Systems
Technology, 2002, vol. 10, no 2, p. 297-307.

[3] 	 HARTWICH, Florian. CAN with flexible
datarate. In : Proc. ICC. 2012.

[4] 	 TINDELL, Ken et BURNS, Alan. Guaranteed
message latencies for distributed safety-critical
hard real-time control networks. Dept. of
Computer Science, University of York, 1994.

[5] 	 LE BOUDEC, Jean-Yves and THIRAN,
Patrick. Network calculus: a theory of
deterministic queuing systems for the internet.
Springer Science & Business Media, 2001.

[6] 	 SOFACK, William Mangoua and BOYER,
	 Marc. Non preemptive static priority

with network calculus: Enhancement.
In : International GI/ITG Conference on
Measurement, Modelling, and Evaluation of
Computing Systems and Dependability and
Fault Tolerance. Springer Berlin Heidelberg,
2012. p. 258-272.

[7] 	 GRENIER, Mathieu, GOOSSENS, Joël, and
NAVET, Nicolas. Near-optimal fixed priority
preemptive scheduling of offset free systems.
In: 14th International Conference on Real-
Time and Networks Systems (RTNS‘06).
2006.
p. 35--42.

[8] 	 ZENG, Haibo, DI NATALE, Marco, GIUSTO,
Paolo, et al. Using statistical methods
to compute the probability distribution of
message response time in controller area
network. IEEE Transactions on Industrial
Informatics, 2010, vol. 6, no 4, p. 678-691.

[9] 	 GRENIER, Mathieu, HAVET, Lionel and
NAVET, Nicolas. Pushing the limits of CAN
– Scheduling frames with offsets provides a
major performance boost, In: 4th European
Congress Embedded Real Time Software
(ERTS 2008), Toulouse, France, January 29 –
February 1, 2008.

[10]	NAVET, Nicolas, SONG, Y.-Q., et SIMONOT,
Françoise. Worst-case deadline failure
probability in real-time applications distributed
over controller area network. Journal of
systems Architecture, 2000, vol. 46, no 7,
p. 607-617.

Daigmorte Hugo, Boyer Marc
ONERA
2, avenue E. Belin
FR-31055 Toulouse Cedex
Tel.: (33) 5.62.25.26.36
Fax: (33) 5.62.25.26.93
www.onera.fr/staff/marcboyer
www.onera.fr/staff/hugodaigmorte

Jörn Migge
RealTimeatWork
Immeuble Thiers, 4 rue Piroux
FR-54000 Nancy
Tel.: (33) 3.83.85.00.03
Fax: (33) 3.83.30.45.98
jorn.migge@realtimeatwork.com

