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Introduction

In this paper, the possibility for hardware 
based timestamps in CAN controllers  
for high precision requirements and use 
cases in higher level protocols will be  
discussed.

The exact time is becoming increasin-
gly important for applications using CAN. 
Therefore, there is the need to break down 
this temporal accuracy to every CAN frame. 
For applications that do not have high requi-
rements for accuracy, it may be sufficient to 
add a timestamp to the CAN frame in the 
interrupt service routine. If there are higher 
requirements for the accuracy or for less 
jitter, a hardware-based timestamp is indis-
pensable. When the CAN frame is received, 
a timestamp is attached to the CAN frame 
directly in the CAN controller.

In addition, this paper also discusses further 
advantages and new applications for hard-
ware Timestamps. For the timestamped TX 
technology, the TX-FIFO of the CAN control-
ler is expanded with a timestamp which con-
tains the sending time. This enables appro-
ximate real-time behaviour on non-real-time 
operating systems. Additionally there is 

available a precise feedback containing the 
transmission time of any given CAN frame.
Timestamps

The timestamp is captured the moment a 
CAN message was received or a CAN event 
occurred. Depending on the device capabi-
lities the time stamping is performed either 
in hardware by the CAN controller or in soft-
ware by the driver‘s interrupt handler using 
a high resolution counter of the host CPU.

For a software timestamp, the timestamp is 
added to the CAN message in the interrupt 
service routine. Depending on the reacti-
vity of the host system, this can lead to the 
following problem. If several interrupts are 
present at the same time, the sequence of 
different events can no longer be distingu-
ished. For example, if a receive interrupt 
and a transmit done interrupt or a CAN error 
interrupt are present at the same time, the 
implementation of the interrupt service rou-
tine decides in which order they are copied 
into the RX FIFO of the CAN driver. An addi-
tionally jitter will be added to the timestamp 
of the CAN message depending on the 
reaction time of the host system. This jitter 
depends on different factors, so it is difficult 
to calculate this afterwards.

Modern CAN controllers, especially for FPGA integration, keep growing stronger and 
more versatile. Also the issues in Industrial Automation are increasingly complex. As a 
result the number of requirements, in particular for high precision timestamps, grows 
as well. The required accuracy can only be obtained through a hardware based solution. 
For this reason, the CAN controller has to be extended with a 64 bit timestamp counter 
and every received CAN frame gets a timestamp at the receiving time. In complex 
systems such as test benches or airplanes, global time networks are necessary. Via 
an external source (e.g. IRIG-B) a timestamp synchronisation of all CAN controllers 
and other nodes in the whole system is possible. Through the availability of an internal 
timestamp high precision CAN frame transmissions will be facilitated. The TX-FIFO of 
the CAN controller is expanded with a 64 Bit timestamp which contains the sending 
time. This enables approximate real-time behaviour in non-real-time operating systems. 
Additionally a precise feedback containing the transmission time of any given CAN 
frame is available. This is particular used by higher level protocols like ARINC825.
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If these and other imprecisions concerning 
accuracy and jitter are not acceptable, a 
hardware based timestamp must be used. 
But first, it should be considered which 
properties this should have. The first point 
must be which timestamp frequency is 
needed to be able to map the order on the 
CAN bus by using the timestamp.

The shortest CAN frame has a length of  
44 bits (ID: 0x111, DLC: 0x12, Data: none, 
Stuff bits: none). With additional interframe 
space, frames can be received within a 
distance of 47 µs. The minimum require- 
ment at 1 Mbit/s would therefore be a 
timestamp with a frequency of 21,3 kHz, to 
store each frame with a new timestamp.

In order to be able to depict CAN errors 
exact in time and map them in correct order, 
a bit time exact timestamp is necessary. 
This results in a new minimum frequency of 
1 MHz.

Now, the time quantum is the smallest unit 
that can occur with CAN and by resync and 
hard sync events, frames are shifted in the 
bit timing by this. This results in the fact that 
the required Timestamp frequency must be 
the CAN controller frequency. In order to be 
able to map all events and messages on the 
CAN bus exactly via the timestamp, this or a 
higher frequency should be selected.

The second question is the width of the 
timestamp. Various widths have already 
been used in the past. If the selected 
timestamp width is too small, the driver and 
all further applications have to cope with the 
fact that the timestamp can wrap and restart 
counting from zero. This can happen very 
quickly with modern CAN controllers.

Table 1: Maximum time count of different 
timestamp widths at e.g. 80 MHz
TS Width Time in Sec Time in Years

16 Bit 0,8192 ms 2,6 x 10-11

32 Bit 53,7 1,7 x 10-6

64 Bit 2,306 x 1011 7312

The table shows that even a 32 bit 
wide timestamp in a human readable 
time resolution is not sufficient for  

CAN applications, since it wraps every  
54 seconds. In the CAN driver every incoming 
timestamp would have to be recalculated 
to an absolute time. In order to avoid these 
problems, a 64 bit wide Timestamp is 
recommended because it will not wrap in the 
foreseeable future. In addition, the 64 bit wide 
timestamp can be considered as an absolute 
time. Without this property, the applications 
described below would not be possible in 
some cases.

Timestamps with higher resolution also 
mean increased hardware requirements. 
In consequence more logic and memory 
resources are needed. But this should not be 
a big problem with modern FPGA based CAN 
interfaces. Since even the smallest FPGA 
types already offer considerable possibilities 
and logic resources.

Using a 32 bit timestamp has another major 
drawback. Each timestamp must be converted 
to an absolute time in the host system. As 
a result, a long word can be saved during 
data transmission to the host. But there are 
extensive 64 bit operations which cost a lot of 
time in the kernel or are not even available in 
all embedded systems.

CAN controllers can run at different 
frequencies, so the timestamp has no default 
resolution and offers more flexibility. The 
timestamp is realized as 64 bit free running 
counter with the most accurate available 
timestamping source. The application can 
query the frequency of the time stamping 
source in order to scale the timestamps online 
or offline and can query the current timestamp 
to link them to the absolute system time.

Classically, the timestamp is recorded at the 
end of the CAN message. This causes an 
unwanted jitter, by the length of the frame and 
according to the stuff bits. If a CAN record is to 
be replayed again, this is distorted by the jitter. 
Therefore, another advantage of a hardware 
based timestamp is that the timestamp can 
also be taken at the Start of Frame (SOF).

In order to keep independent systems 
synchronized, it should be possible to feed 
an external timestamp. Various concepts can 
be presented here, for example IRIG B [3], in 
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which the time information can be transmitted 
analogue or digitally by a separate link. Among 
other, this time synchronisation is popular in 
the aviation industry. With this extension all 
devices can be operated with the same time 
base.

In Figure 1 is shown an example for a system 
with several nodes that are connected via 
a CAN bus. For time synchronization the 
nodes are connected by an additional link 
which is provided by an IRIG-B generator. 

Timestamped TX

Through the availability of an internal 
timestamp high precision CAN frame 
transmissions will be facilitated. The idea 
is to add a timestamp to the CAN Frame 
with the time information when it should be 
sent. The TX-FIFO of the CAN controller is 
expanded with a 64 Bit timestamp which 
contains the sending time. This enables 
approximate real-time behaviour on non-
real-time operating systems. CAN hardware 
supporting this mechanism reaches an 
accuracy of one bit time, when sending onto 
a free CAN bus.

In normal case a CAN frame is sent with 
“canSend” from application level to the CAN 
driver. The frame is added to the TX queue 
and if there is a free Element in the TX FIFO 
in Hardware, the CAN driver moves this 
Frame into the TX FIFO. 

In case of the new Timestamped TX the CAN 
frames are transferred to second TX queue 
in the CAN driver. This queue is parallel to 

the normal TX queue. This creates a second 
channel for transferring CAN frames in the 
CAN controller. In this queue, the CAN 
frames are at first collected and sorted. The 
sorting is arranged chronologically according 
to the transmitted transmission times. CAN 
frames with the same timestamp remain in 
the order as they were passed to the CAN 
driver. Subsequent jobs with the same 
timestamp are sorted down as follows.

At cyclic intervals, the driver moves CAN 
frames from the TX queue into a TX 
window. No reordering is possible from this 
point onwards. The size or duration of this 
transmission window depends on the used 
hardware (CAN card, host architecture, host 
CPU), the used data bus (e.g. USB, PCI 
Express) and maybe the used operating 
system. Typically this value is approximately 
100 ms before the actual planned time of 
transmission. In this time the CAN driver will 
move this CAN frames into the so called TX-
TS window. 

In the next step the CAN driver will move the 
CAN Frames from this window into a special 
TX-TS FIFO of the CAN controller. This is 
parallel to the existing TX FIFO. The size of 
this TX FIFO has to be that a „back-to-back“ 
transmission of scheduled frames can be 
ensured. Thus there is only a subset of the 
frames of the TX-TS window in the TX-TS 
FIFO. In this case, the CAN frames can no 
longer be resorted in their ordering.

As soon as the transmission object of the 
CAN controller is empty, a new CAN frame 
is obtained from the FIFOs. An arbiter will 
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Figure 1: Example configuration for a System with IRIG-B Time Synchronization
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prioritize CAN frames from the TX-TS path 
which are ready to send over frames from the 
normal TX path. Alternatively, other arbitration 
modes could also be selected, such as CAN 
priority or round robin.

Figure 2 describes the structure of the 
Timestamped TX concept parallel to a 
standard CAN FIFO implementation. The 
CAN frames are sent via the API functions 
to the CAN driver. In normal case, the CAN 
frame is added (“canSend”) to the TX Queue. 
The CAN driver checks the TX FIFO in FPGA. 
If there is space for new messages the driver 
copies the data in the FIFO otherwise it waits 
for completed jobs. 

Frames to be sent with “canSendT” are added 
to the TX-TS queue in order of the attached 
timestamp. In the area of the TX-TS Window 
CAN frames are moved into the TX-TS FIFO 
if there is space for new elements the way it 
was already described. 

Now the arbiter decides from which FIFO the 
next CAN frame is to be sent. If the timestamp 
of the scheduled frame is expired, this frame 
will be the next CAN frame to be sent. 
Otherwise the next frame of the TX FIFO will 
be sent on the free bus. 

If the configured timeout for the CAN frame 
from the TX-TS FIFO has expired, this  
frame is discarded at this moment. A 
precalculation does not take place if a 
timeout will occur during the transmission. 
Similarly, it could happen that a frame 
is taken from the normal TX FIFO and  
even if the CAN controller is still  
transmitting, the transmit time for the next 
scheduled frame from TX-TS FIFO is 
reached.

In figure 3 the timeline of an example of CAN 
messages is shown. At time t1, the CAN bus is 
free and the arbiter takes the CAN message 
CMt1 from the TX-TS FIFO and sends this 
as soon as possible to the next bit time. The 
resulting delay is indicated by tD. The frame 
is directly followed by a frame CMS2 from  
the TX FIFO. At the time of transmission  
from CMt2 to time t2, the CAN controller is 
busy and sends CMS3. Thus, the scheduled 
CAN frame CMt2 is delayed, but this Frame 
is sent directly in the following of CMS3. At 
time t3 the frame CMt3 has been scheduled. 
With the configured abort timeout tA, 
the CAN frame could not be sent and is 
aborted after CMt2. The CAN driver and the 
user application are informed by an event 
message.
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Timestamped TX is fully compliant with [1] and 
does not break any CAN rules of transmission. 
A scheduled frame will only be transmitted in 
time, if the bus is idle and the CAN priority 
(CAN-ID) qualifies for transmission at that 
certain moment. Otherwise the transmission 
is delayed until correct conditions are given or 
the transmission is aborted (e.g. by timeout).

Use cases

Hardware based timestamps can be used 
in many areas. In more and more industrial 
sectors, there are increasing demands on 
accuracy, for example in aircraft or test 
benches. Validations can only be carried out 
meaningfully if the corresponding tools also 
have the required accuracy.

The use cases shown here are only 
an example for the industry areas and 
applications in which hardware based 
timestamps can be used.

Use case 1:
Due to the high resolution timestamps, 
highly accurate CAN logging is possible. 
This can be used for documentation, but 
also for further offline error search. A bit-
accurate image of the CAN bus can be 
analysed afterwards. The combination of 
the hardware based timestamp in send and 
receive direction makes it possible to replay 
this exact CAN log again.

Use case 2:
In the area of residual bus simulation a 
higher accuracy is possible. The scenarios 
can be calculated in exact CAN bit time. For 
the validation of the system under test the 
CAN frames with hardware timestamp give 
an exact image of the CAN bus and can also 
be evaluated with bit time accurately. 

Use case 3:
In some systems, an exact sync signal 
is required. This can be ensured with the 
Timestamped TX mode. Herewith can be 
programmed a precise sync generation. 

Use case 4:
Other higher level protocols are also 
possible, for example the ARINC 825 [2] 
protocol. The available CAN bus time is 

divided into several time slices and in 
this time slices CAN frames can be sent 
cyclically. It must be ensured that the CAN 
frames are only sent within the time slice. 
CAN Frames that cannot be sent in case of 
a busy CAN bus or an overloaded time slice 
must be aborted. 

Use case 5:
A welcome side-effect of the Timestamped 
TX is an integrated high priority TX FIFO, 
which lets CAN frames bypass the queued 
TX jobs. Many users feel most comfortable 
while working in FIFO mode. Hereby it is 
possible to transmit emergency CAN frames 
deterministically with as little delay as such 
frames deserve, yet without changing the 
preferred programming paradigm. The 
Timestamped TX is used in the same 
way as described before, but instead of 
using timestamps in the future it is used a 
timestamps in the past. The frames will be 
transmitted as soon as possible with the 
advantage of having a higher priority.

Use case 6:
A hardware based timestamp results in a 
smaller jitter in comparison to a software 
timestamp. With this advantage a timestamp 
synchronisation via CAN messages in a CAN 
network (CAN-To-CAN Synchronisation) 
results in a higher accuracy. For this 
application it is necessary to reduce the 
interrupt latency to get the best results. 

Summary

The high precision hardware based time-
stamps can help to improve the accuracy 
of complex systems in areas where CAN is 
used. This may be in aerospace, automotive, 
medical or general industrial automation.

Hardware timestamps usually result in 
higher accuracy compared to software 
timestamps as the jitter does not depend on 
real-time capabilities or the CPU load of the 
host system. Hardware based timestamps 
with 64 bit width and CAN controller 
frequency are the best choice for a high 
precision timestamp resolution. In order to 
reduce the jitter even further, timestamps 
can be recorded on the Start of Frame 
(SOF) instead of the end.
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A 64 bit hardware based timestamp needs 
more hardware resources in the CAN con-
troller, but offers an absolute time in hard-
ware and so a variety of advantages. In 
addition the TX-FIFO of the CAN controller 
is expanded with a 64 Bit timestamp which 
contains the sending time. This enables ap-
proximate real-time behaviour in non-real-
time operating systems. 
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