
iCC 2017 CAN in Automation

04-6

CAN send and receive with hardware
timestamping

Hauke Webermann, esd electronic system design gmbh

Introduction

In this paper, the possibility for hardware
based timestamps in CAN controllers
for high precision requirements and use
cases in higher level protocols will be
discussed.

The exact time is becoming increasin-
gly important for applications using CAN.
Therefore, there is the need to break down
this temporal accuracy to every CAN frame.
For applications that do not have high requi-
rements for accuracy, it may be sufficient to
add a timestamp to the CAN frame in the
interrupt service routine. If there are higher
requirements for the accuracy or for less
jitter, a hardware-based timestamp is indis-
pensable. When the CAN frame is received,
a timestamp is attached to the CAN frame
directly in the CAN controller.

In addition, this paper also discusses further
advantages and new applications for hard-
ware Timestamps. For the timestamped TX
technology, the TX-FIFO of the CAN control-
ler is expanded with a timestamp which con-
tains the sending time. This enables appro-
ximate real-time behaviour on non-real-time
operating systems. Additionally there is

available a precise feedback containing the
transmission time of any given CAN frame.
Timestamps

The timestamp is captured the moment a
CAN message was received or a CAN event
occurred. Depending on the device capabi-
lities the time stamping is performed either
in hardware by the CAN controller or in soft-
ware by the driver‘s interrupt handler using
a high resolution counter of the host CPU.

For a software timestamp, the timestamp is
added to the CAN message in the interrupt
service routine. Depending on the reacti-
vity of the host system, this can lead to the
following problem. If several interrupts are
present at the same time, the sequence of
different events can no longer be distingu-
ished. For example, if a receive interrupt
and a transmit done interrupt or a CAN error
interrupt are present at the same time, the
implementation of the interrupt service rou-
tine decides in which order they are copied
into the RX FIFO of the CAN driver. An addi-
tionally jitter will be added to the timestamp
of the CAN message depending on the
reaction time of the host system. This jitter
depends on different factors, so it is difficult
to calculate this afterwards.

Modern CAN controllers, especially for FPGA integration, keep growing stronger and
more versatile. Also the issues in Industrial Automation are increasingly complex. As a
result the number of requirements, in particular for high precision timestamps, grows
as well. The required accuracy can only be obtained through a hardware based solution.
For this reason, the CAN controller has to be extended with a 64 bit timestamp counter
and every received CAN frame gets a timestamp at the receiving time. In complex
systems such as test benches or airplanes, global time networks are necessary. Via
an external source (e.g. IRIG-B) a timestamp synchronisation of all CAN controllers
and other nodes in the whole system is possible. Through the availability of an internal
timestamp high precision CAN frame transmissions will be facilitated. The TX-FIFO of
the CAN controller is expanded with a 64 Bit timestamp which contains the sending
time. This enables approximate real-time behaviour in non-real-time operating systems.
Additionally a precise feedback containing the transmission time of any given CAN
frame is available. This is particular used by higher level protocols like ARINC825.

iCC 2017 CAN in Automation

04-7

If these and other imprecisions concerning
accuracy and jitter are not acceptable, a
hardware based timestamp must be used.
But first, it should be considered which
properties this should have. The first point
must be which timestamp frequency is
needed to be able to map the order on the
CAN bus by using the timestamp.

The shortest CAN frame has a length of
44 bits (ID: 0x111, DLC: 0x12, Data: none,
Stuff bits: none). With additional interframe
space, frames can be received within a
distance of 47 µs. The minimum require-
ment at 1 Mbit/s would therefore be a
timestamp with a frequency of 21,3 kHz, to
store each frame with a new timestamp.

In order to be able to depict CAN errors
exact in time and map them in correct order,
a bit time exact timestamp is necessary.
This results in a new minimum frequency of
1 MHz.

Now, the time quantum is the smallest unit
that can occur with CAN and by resync and
hard sync events, frames are shifted in the
bit timing by this. This results in the fact that
the required Timestamp frequency must be
the CAN controller frequency. In order to be
able to map all events and messages on the
CAN bus exactly via the timestamp, this or a
higher frequency should be selected.

The second question is the width of the
timestamp. Various widths have already
been used in the past. If the selected
timestamp width is too small, the driver and
all further applications have to cope with the
fact that the timestamp can wrap and restart
counting from zero. This can happen very
quickly with modern CAN controllers.

Table 1: Maximum time count of different
timestamp widths at e.g. 80 MHz
TS Width Time in Sec Time in Years

16 Bit 0,8192 ms 2,6 x 10-11

32 Bit 53,7 1,7 x 10-6

64 Bit 2,306 x 1011 7312

The table shows that even a 32 bit
wide timestamp in a human readable
time resolution is not sufficient for

CAN applications, since it wraps every
54 seconds. In the CAN driver every incoming
timestamp would have to be recalculated
to an absolute time. In order to avoid these
problems, a 64 bit wide Timestamp is
recommended because it will not wrap in the
foreseeable future. In addition, the 64 bit wide
timestamp can be considered as an absolute
time. Without this property, the applications
described below would not be possible in
some cases.

Timestamps with higher resolution also
mean increased hardware requirements.
In consequence more logic and memory
resources are needed. But this should not be
a big problem with modern FPGA based CAN
interfaces. Since even the smallest FPGA
types already offer considerable possibilities
and logic resources.

Using a 32 bit timestamp has another major
drawback. Each timestamp must be converted
to an absolute time in the host system. As
a result, a long word can be saved during
data transmission to the host. But there are
extensive 64 bit operations which cost a lot of
time in the kernel or are not even available in
all embedded systems.

CAN controllers can run at different
frequencies, so the timestamp has no default
resolution and offers more flexibility. The
timestamp is realized as 64 bit free running
counter with the most accurate available
timestamping source. The application can
query the frequency of the time stamping
source in order to scale the timestamps online
or offline and can query the current timestamp
to link them to the absolute system time.

Classically, the timestamp is recorded at the
end of the CAN message. This causes an
unwanted jitter, by the length of the frame and
according to the stuff bits. If a CAN record is to
be replayed again, this is distorted by the jitter.
Therefore, another advantage of a hardware
based timestamp is that the timestamp can
also be taken at the Start of Frame (SOF).

In order to keep independent systems
synchronized, it should be possible to feed
an external timestamp. Various concepts can
be presented here, for example IRIG B [3], in

iCC 2017 CAN in Automation

04-8

which the time information can be transmitted
analogue or digitally by a separate link. Among
other, this time synchronisation is popular in
the aviation industry. With this extension all
devices can be operated with the same time
base.

In Figure 1 is shown an example for a system
with several nodes that are connected via
a CAN bus. For time synchronization the
nodes are connected by an additional link
which is provided by an IRIG-B generator.

Timestamped TX

Through the availability of an internal
timestamp high precision CAN frame
transmissions will be facilitated. The idea
is to add a timestamp to the CAN Frame
with the time information when it should be
sent. The TX-FIFO of the CAN controller is
expanded with a 64 Bit timestamp which
contains the sending time. This enables
approximate real-time behaviour on non-
real-time operating systems. CAN hardware
supporting this mechanism reaches an
accuracy of one bit time, when sending onto
a free CAN bus.

In normal case a CAN frame is sent with
“canSend” from application level to the CAN
driver. The frame is added to the TX queue
and if there is a free Element in the TX FIFO
in Hardware, the CAN driver moves this
Frame into the TX FIFO.

In case of the new Timestamped TX the CAN
frames are transferred to second TX queue
in the CAN driver. This queue is parallel to

the normal TX queue. This creates a second
channel for transferring CAN frames in the
CAN controller. In this queue, the CAN
frames are at first collected and sorted. The
sorting is arranged chronologically according
to the transmitted transmission times. CAN
frames with the same timestamp remain in
the order as they were passed to the CAN
driver. Subsequent jobs with the same
timestamp are sorted down as follows.

At cyclic intervals, the driver moves CAN
frames from the TX queue into a TX
window. No reordering is possible from this
point onwards. The size or duration of this
transmission window depends on the used
hardware (CAN card, host architecture, host
CPU), the used data bus (e.g. USB, PCI
Express) and maybe the used operating
system. Typically this value is approximately
100 ms before the actual planned time of
transmission. In this time the CAN driver will
move this CAN frames into the so called TX-
TS window.

In the next step the CAN driver will move the
CAN Frames from this window into a special
TX-TS FIFO of the CAN controller. This is
parallel to the existing TX FIFO. The size of
this TX FIFO has to be that a „back-to-back“
transmission of scheduled frames can be
ensured. Thus there is only a subset of the
frames of the TX-TS window in the TX-TS
FIFO. In this case, the CAN frames can no
longer be resorted in their ordering.

As soon as the transmission object of the
CAN controller is empty, a new CAN frame
is obtained from the FIFOs. An arbiter will

Node
1

Node
2

Node
n

IR IG -B
G enerator

C AN-B us

IR IG -B

Figure 1: Example configuration for a System with IRIG-B Time Synchronization

iCC 2017 CAN in Automation

04-9

prioritize CAN frames from the TX-TS path
which are ready to send over frames from the
normal TX path. Alternatively, other arbitration
modes could also be selected, such as CAN
priority or round robin.

Figure 2 describes the structure of the
Timestamped TX concept parallel to a
standard CAN FIFO implementation. The
CAN frames are sent via the API functions
to the CAN driver. In normal case, the CAN
frame is added (“canSend”) to the TX Queue.
The CAN driver checks the TX FIFO in FPGA.
If there is space for new messages the driver
copies the data in the FIFO otherwise it waits
for completed jobs.

Frames to be sent with “canSendT” are added
to the TX-TS queue in order of the attached
timestamp. In the area of the TX-TS Window
CAN frames are moved into the TX-TS FIFO
if there is space for new elements the way it
was already described.

Now the arbiter decides from which FIFO the
next CAN frame is to be sent. If the timestamp
of the scheduled frame is expired, this frame
will be the next CAN frame to be sent.
Otherwise the next frame of the TX FIFO will
be sent on the free bus.

If the configured timeout for the CAN frame
from the TX-TS FIFO has expired, this
frame is discarded at this moment. A
precalculation does not take place if a
timeout will occur during the transmission.
Similarly, it could happen that a frame
is taken from the normal TX FIFO and
even if the CAN controller is still
transmitting, the transmit time for the next
scheduled frame from TX-TS FIFO is
reached.

In figure 3 the timeline of an example of CAN
messages is shown. At time t1, the CAN bus is
free and the arbiter takes the CAN message
CMt1 from the TX-TS FIFO and sends this
as soon as possible to the next bit time. The
resulting delay is indicated by tD. The frame
is directly followed by a frame CMS2 from
the TX FIFO. At the time of transmission
from CMt2 to time t2, the CAN controller is
busy and sends CMS3. Thus, the scheduled
CAN frame CMt2 is delayed, but this Frame
is sent directly in the following of CMS3. At
time t3 the frame CMt3 has been scheduled.
With the configured abort timeout tA,
the CAN frame could not be sent and is
aborted after CMt2. The CAN driver and the
user application are informed by an event
message.

CAN HardwareCAN Driver

CAN Core in FPGA

C
AN

 C
on

tro
lle

rcanSend

canSendT

TX-TS
Window

TX-TS FIFO A
rb

ite
r

CM
S1

CM
S2

CM
S3

CM
Sn

TX FIFO

CMt1

t
1

CMt2

t
2

CMt3

t
3

CMtm

t
m

CMt1CMt2CMt3CMtm...CMTF...CMTx

C
AN

-B
us

TX Queue

TX-TS Queue

User Application

1. Stage 2. Stage 3. Stage

Figure 2: Timestamped TX structure, from User Application to CAN Hardware

t
CM

S1
CM

t1

t
1

CM
S2

t
A

CM
S3

t
2

CM
t2

CM
t3

...
t
3

ab
ort

edt
A

CM
tm

t
m

t
A

CM
Sn

t
A

CM
S4

tD

Figure 3: CAN message send timeline

iCC 2017 CAN in Automation

04-10

Timestamped TX is fully compliant with [1] and
does not break any CAN rules of transmission.
A scheduled frame will only be transmitted in
time, if the bus is idle and the CAN priority
(CAN-ID) qualifies for transmission at that
certain moment. Otherwise the transmission
is delayed until correct conditions are given or
the transmission is aborted (e.g. by timeout).

Use cases

Hardware based timestamps can be used
in many areas. In more and more industrial
sectors, there are increasing demands on
accuracy, for example in aircraft or test
benches. Validations can only be carried out
meaningfully if the corresponding tools also
have the required accuracy.

The use cases shown here are only
an example for the industry areas and
applications in which hardware based
timestamps can be used.

Use case 1:
Due to the high resolution timestamps,
highly accurate CAN logging is possible.
This can be used for documentation, but
also for further offline error search. A bit-
accurate image of the CAN bus can be
analysed afterwards. The combination of
the hardware based timestamp in send and
receive direction makes it possible to replay
this exact CAN log again.

Use case 2:
In the area of residual bus simulation a
higher accuracy is possible. The scenarios
can be calculated in exact CAN bit time. For
the validation of the system under test the
CAN frames with hardware timestamp give
an exact image of the CAN bus and can also
be evaluated with bit time accurately.

Use case 3:
In some systems, an exact sync signal
is required. This can be ensured with the
Timestamped TX mode. Herewith can be
programmed a precise sync generation.

Use case 4:
Other higher level protocols are also
possible, for example the ARINC 825 [2]
protocol. The available CAN bus time is

divided into several time slices and in
this time slices CAN frames can be sent
cyclically. It must be ensured that the CAN
frames are only sent within the time slice.
CAN Frames that cannot be sent in case of
a busy CAN bus or an overloaded time slice
must be aborted.

Use case 5:
A welcome side-effect of the Timestamped
TX is an integrated high priority TX FIFO,
which lets CAN frames bypass the queued
TX jobs. Many users feel most comfortable
while working in FIFO mode. Hereby it is
possible to transmit emergency CAN frames
deterministically with as little delay as such
frames deserve, yet without changing the
preferred programming paradigm. The
Timestamped TX is used in the same
way as described before, but instead of
using timestamps in the future it is used a
timestamps in the past. The frames will be
transmitted as soon as possible with the
advantage of having a higher priority.

Use case 6:
A hardware based timestamp results in a
smaller jitter in comparison to a software
timestamp. With this advantage a timestamp
synchronisation via CAN messages in a CAN
network (CAN-To-CAN Synchronisation)
results in a higher accuracy. For this
application it is necessary to reduce the
interrupt latency to get the best results.

Summary

The high precision hardware based time-
stamps can help to improve the accuracy
of complex systems in areas where CAN is
used. This may be in aerospace, automotive,
medical or general industrial automation.

Hardware timestamps usually result in
higher accuracy compared to software
timestamps as the jitter does not depend on
real-time capabilities or the CPU load of the
host system. Hardware based timestamps
with 64 bit width and CAN controller
frequency are the best choice for a high
precision timestamp resolution. In order to
reduce the jitter even further, timestamps
can be recorded on the Start of Frame
(SOF) instead of the end.

iCC 2017 CAN in Automation

04-11

A 64 bit hardware based timestamp needs
more hardware resources in the CAN con-
troller, but offers an absolute time in hard-
ware and so a variety of advantages. In
addition the TX-FIFO of the CAN controller
is expanded with a 64 Bit timestamp which
contains the sending time. This enables ap-
proximate real-time behaviour in non-real-
time operating systems.

References
[1]	 ISO 11898-1: Road vehicles - Controller area

network (CAN) - Part 1: Data link layer and
physical signaling, December 2015

[2]	 ARINC Specification 825-3: General
Standardization of CAN (Controller area
network) Bus Protocol for Airborne use,
July 2015

[3]	 IRIG Standard 200-04: IRIG Serial Time Code
Formats, September 2004

[4]	 esd electronic system design gmbh: NTCAN
Part 1: Application Developers Manual,
11. November 2016

[5]	 esd electronic system design gmbh: ARINC
825 Library Software 	Manual, 23. November
2015

[6]	 esd electronic system design gmbh: CPCI-
CAN/400. 4x CAN with ARINC Protocol and
IRIG-B, 11. November 2015

[7]	 Voss, Wilfried: A comprehensible guide
to Controller area network: Copperhill
Technologies Corporation, 2005

Hauke Webermann
esd electronic system design gmbh
Vahrenwalder Str. 207
DE-30165 Hannover
Tel.: +49-511-37298-0
Fax: +49-511-37298-68
hauke.webermann@esd.eu
https://esd.eu

