
iCC 2020 CAN in Automation

45

Introducing CAN XL into CAN Networks

Florian Hartwich, Robert Bosch

Introduction

The initial spark for CAN XL was a
presentation at the ISO/TC 22/SC31/WG3
plenary meeting in September 2018, where
Volkswagen started a discussion about a
bus network that combines Ethernet style
frames with CAN style arbitration at a net
data rate of 10 MBit/s.

Figure 1: Filling the gap between CAN FD
and Ethernet

While an automotive Ethernet bus net-
work is also in development (10BASE-T1S),
that requires a more complicated collision-
avoidance method, compared to CAN’s non-
destructive collision-resolution.
The presentation found widespread interest
in both the automotive as well as in the
industrial automation industry and lead to the

The next generation of CAN communication is currently being specified inside the CiA’s
CAN XL Special Interest Group. The new frame format combines Ethernet style frames
with the non-destructive collision-resolution of CAN arbitration. Newly developed
CAN XL transceivers with symmetrical bit levels in the data phase will enable a net
bit rate of 10 MBit/s, but existing CAN FD transceivers may also be used, at lower
bit rate.
The new CAN XL frame format introduces a header CRC, a payload type describing the
contents of the data field, and up to 2048 data bytes. After the arbitration is decided, the
bit timing is switched from arbitration bit rate to data bit rate and the CAN XL transceivers
are set into a high-speed operating mode. They return to arbitration mode before CAN
style acknowledgement.
This paper explains the CAN XL frame format in detail, especially the differences and
the compatibilities between CAN XL and CAN FD. Further emphasis is placed on the
introduction strategy of CAN XL nodes into existing CAN FD systems and on new
communication concepts. Finally, the paper shows the impact of the longer payloads
on the hardware implementation of CAN controllers.

establishment of the CAN XL Special Interest
Group (SIG) inside CAN in Automation for
further discussion on this new concept.
The name CAN XL was chosen at the first
SIG CAN XL meeting in December 2018
that started the specification of the CAN XL
protocol and physical layer as parts of the
forthcoming CiA610 document series.
The goal of the SIG CAN XL is a technically
stable CAN XL specification for OSI layers
1 and 2 (known as CAN XL protocol) that
merges CAN principles with higher bandwidth,
low cost, and future proof features. As second
step, the ISO standardization will be started.
In addition, many other CAN related standards
will be updated simultaneously to support
CAN XL, namely the CAN Conformance Test
according to ISO16845, time-synchronization,
and the transport layer.

Key Protocol Features

	 •	 Net data rates up to 10Mbit/s
	 •	 Large data fields with up to 2048 byte
		 enable the tunneling of complete Ethernet
		 frames e.g. used for higher layer protocols
		 like IP (Internet Protocol)
	 •	 Interoperability with CAN FD for mixed
		 FD/XL networks

iCC 2020 CAN in Automation

46

Physical Layer

CAN XL will be operable with four classes
of CAN transceivers (see also [5]):
	 •	 Classical CAN up to 1Mbit/s
	 •	 CAN FD up to 2Mbit/s
	 •	 CAN FD-SiC up to 5-8Mbit/s
	 •	 CAN XL up to 10 Mbit/s and beyond (in
		 development)
The actual bit rate of CAN XL can be adapted
to the requirements of the communication
system and the network topology.

Compatibility of CAN XL and CAN FD

When CAN FD was specified in ISO
11898-1:2015, one bit was reserved for
the future expansion of the protocol. This
is the reserved bit after the FDF bit, which
is expected to be dominant in CAN FD
frames. When it is seen recessive, a CAN
FD node will detect a protocol exception.
Software configuration decides whether the
node treats this as a form error or whether it
enters the Protocol Exception State, where
it will remain until the bus is idle again.
The CAN XL frame format is, up to the FDF
bit, identical to the FD base frame format
FBFF. IDE is always dominant in CAN XL
frames; they do not use 29-bit identifiers. In
CAN XL format, both the FDF bit and the
following XLF bit are transmitted recessive.
XLF replaces the dominant reserved bit of
the CAN FD for-mat, so a receiving node
branches at this bit into CAN XL reception
state, or into Protocol Exception State when
it is a CAN FD node. The transmitter of a
CAN XL frame may lose arbitration at the
FDF or XLF bits against other nodes sending
a Classical CAN or CAN FD frame.

Figure 2: Decoding the Frame Format

The Protocol Exception State feature
of CAN FD node allows introducing
CAN XL nodes into CAN FD systems,
providing an incremental upgrade path to
CAN XL.

When a CAN XL frame is transmitted, the
recessive XLF bit after the FDF bit sets the
CAN FD nodes into the Protocol Exception
State where they do not disturb the CAN XL
frame. The CAN FD nodes cannot receive
the CAN XL frame, but they do not detect an
error and they are able to join the arbitration
for the following frame.

CAN XL Frame Format

The CAN XL frame format also contains
one bit that is reserved for the future
expansion of the protocol. This is the
resXL bit after the XLF bit, which is
expected to be dominant in CAN XL
frames. When it is seen recessive, a
CAN XL node will detect a protocol
exception, which is handled like in a
CAN FD node.
The beginning of a CAN XL frame has
the same bit rate and stuffing mechanism
as in Classical CAN or CAN FD, but
after arbitration is decided, the control
field is expanded with additional sub-fields
and fixed bit stuffing is used. Excluding
the 29-bit identifiers enables a high
net bit-rate for short payloads while
additional addressing may be added to
the payload.
The ADS bit sequence provides synchro-
nization edges before and after switching
from arbitration bit rate to data phase bit rate
and optionally switching of the trans-ceiver’s
operating mode.
The Payload Type PT describes the
formatting of the frame’s data field. This
enables classical CAN data fields, additional
addressing, transparent Ethernet frame
tunneling, use of TCP/IP, SOME/IP, and
more. Details will be specified in a sepa-
rate higher-layer standard document, also
developed by the SIG CAN XL.
The DLC in the range of 0 to 2047 codes
the data field length of 1 to 2048 bytes in
byte granularity. The complete header is
protected by the header CRC while the
Stuff Bit Count SBC checks the number of
dynamic stuff bits.

Figure 3: CAN XL Control Field

iCC 2020 CAN in Automation

47

The data field is followed by the 32 bit long
frame CRC sequence that secures the
whole frame, including the header. The
format check pattern FCP at the end of the
CRC field checks for bit insertions and bit
drops caused by mis-synchronizations.

Figure 4: CAN XL Data Field and Frame
CRC

After the data phase ends with the CRC
field, the DAS bit sequence provides syn-
chronization when switching back to arbi-
tration bit rate. Acknowledge, EOF, and
Intermission complete the frame and allow
the re-integration of CAN FD nodes.

Figure 5: CAN XL Acknowledge and End of
Frame

CAN XL Transceiver’s Operating Modes

Like in CAN FD, CAN XL frames include
a data phase where a faster bit rate is
used than in the arbitration phase. The bit
rate of the arbitration phase has the same
dependency on signal delay times as in
CAN FD or Classical CAN, so the three
frame formats can arbitrate with each
other.
In the data phase, the bit rate is not limited
by signal delay time, but by asymmetry
of the bit edges and by ringing caused by
bus topology. Two new types of transceiv-
ers have been developed for CAN FD,
“FD” with improved symmetry and
“FD-SIC” with a ringing-suppression
function. These transceivers enable
bit rates up to 8 MBit/s, but they
still operate with the usual bit levels
specified in ISO 11898-2, “dominant”
(transceiver drives differential voltage VDiff
to 2 V at twisted pair bus line) and
“recessive” (termination resistors shorten
VDiff to 0 V).
A new transceiver type with three operat-ing
modes is being developed for CAN XL. In

the arbitration phase, it operates with the
ISO11898-2 levels, but in the data phase,
the transmitter drives both bit levels push/
pull with the same, inverse strength while
the receiver does not drive at all.
The (currently not finalized) specification
sets the VDiff levels to ±1V with a
receiver threshold T_d at 0V. Target is
a gross bit rate of more than 12 MBit/s,
resulting in a net bit rate of at least
10 MBit/s.
Switching the transceiver from arbitration
phase mode into data phase transmitter
mode or receiver mode and then back
requires a change in the interface between
protocol controller and transceiver.
The CAN XL protocol controller signals
the mode switches to the transceiver
during the ADS and DAS bit sequences.
The signaling method uses only the
existing RxD and TxD signals, avoiding the
cost of additional pins. The (currently not
finalized) specification signals via a pulse
on the RxD signal, driven by the protocol
controller; details are shown in Figure 7 and
Figure 9.
In current transceivers, TxD is output of the
protocol controller and RxD is output of the
transceiver. The protocol controller gets the
ability to switch the direction of its RxD pin
for mode signaling, while the transceiver
reduces its driving strength on the RxD
signal after each change of the signal;
details are shown in Figure 6.
When a CAN IP module is integrated into
a µC, two of the General Purpose Input/-
Output (GPIO) pins are selected for CAN
communication. Generic GPIO pins have
three register bits to control their direction
and their output value or to read their input
value, accessible via their peripheral bus,
see top of Figure 6. The pin selected as
output CAN_Tx needs a multiplexer that
enables the output driver to be directly
controlled by the protocol controller, which
operates in its own CAN clock domain, not
in the peripheral bus clock domain. The pin
selected as input CAN_Rx needs a direct
path to the protocol controller that bypasses
the synchronization to the peripheral clock.
For CAN XL mode switching, two
multiplexers allow the protocol controller to
control direction and output value of the
RxD pin.

iCC 2020 CAN in Automation

48

Figure 6: GPIO pins for CAN Controllers

Figure 7: Arbitration to Data Sequence ADS

Entering Data Phase Modes

The transceiver mode is switched from
arbitration phase mode to data phase mode
during the ADS bit sequence. Both resXL
and AL1 bits are driven dominant by the
transmitter and recessive by the receivers,
so all nodes see VDiff > T_a, setting their RxD
pin to low level. During AL1, the protocol
controllers set their RxD pins, for a time of 3
tq, into output mode and drive a highpulse,
see Figure 7. The transceivers detect the
pulse and switch their operating mode into
Tx data phase mode (when TxD = L) or into
Rx data phase mode (when TxD = H).
The mode-switch is confirmed to the protocol
controllers by a static high level at the RxD
signal for transmitters or by a level in the
rest of the AL1 bit for receivers.

ENB

Sync2Peripheral Clock

G eneric G P IO P in
Output Direction

Output Value

Input Value
Pe

rip
he

ra
l

 B
us

CAN_TX

Sync2Peripheral Clock

G P IO P in s elected for C AN_T X

TxD

OutputOutput Direction

Output Value

Input Value

ENB

Pe
rip

he
ra

l
Bu

s

Select_for_CAN

Sync2Peripheral Clock

G P IO P in s elected for C AN_R X

RxD

CAN_RX

RxD_ Out_Val

RxD_ Out_Ena
Select_for_CAN

InputOutput Direction

Output Value

Input Value

ENB

Pe
rip

he
ra

l
Bu

s

T_OoB

3,5V

1,5V

2,5V

0V t

U

-2V

+2V

0V t

VDIFF = CAN_H – CAN_LU

T_a
T_d

3,0V

2,0V

CAN_H

CAN_L

FDF XLF resXL AL1
D
H
1

D
L
1

PT = 0xA8
7 6 5 4 3 2 1 0

-1V

+1V

TxD Transmitter

RxD Transmitter

RxD Receiver

Transceiver Loop Delay

Bus Line Delay
(5 ns/m)

Switch
to Tx-Data

Switch
to Rx-Data

Pulse driven by Protocol Controller

-0.4V

TxD Receiver H

L

Confirmation for Tx-Data:
RxD is static 1

Confirmation for Rx-Data:
 1 -Pulse at RxD

Switch
to Tx-Data

Switch
to Rx-Data

Vdiff_D0_Min

The AL1 bit is the last bit of the arbitration
phase, the DH1 bit is the first bit of the
data phase, the bit rate changing at the bit
boundary. All protocol controllers ignore
the edges and the value sampled at the
AL1 bit, it is excluded from CRC calcula-
tion (see [4]). The receivers perform a hard
synchronization at the edge from DH1 to
DL1, minimizing their accumulated phase
shifts.
In the data phase, the transmitter’s trans-
ceiver drives the TxD signal symmetrically
in push/¬pull mode with VDiff levels at ±1V,
beginning with the edge to the DH1 bit. The
receivers’ transceivers switch their input
comparator threshold from the usual T_a
(0.7 V) to T_d at 0V, latest at the DH1 bit.
Error flags that overwrite data bits are not
possible while the transmitter sends in
push/pull mode, so the receivers will not
send an error flag when they detect an
error. Instead, they will switch their trans-
ceivers back into arbitration phase mode
and wait for the bus idle detection condi-
tion, similar to the restricted operation mode
as specified in chapter 10.15 of [2]. When
the receivers cannot send error flags, the
transmitter dispenses with bit error checks;
it treats a transmission as valid when it is
acknowledged. For CAN XL error detection
capabilities, see [3].

Integrating into CAN XL communication

While a transceiver in data phase mode can
decode a ‘0’ bit send by another transceiver
in arbitration phase mode and transceiver
in arbitration phase mode can decode a ‘1’
bit send in data phase mode, the inverse bit
levels cannot be decoded unambiguously.
This could prevent a node that is started
while CAN XL communication is already in
progress from integrating into the system.
A newly started node waits for the idle
condition (detection of a sequence of eleven
consecutive sampled recessive bits) before
it can receive or transmit frames. When the
starting node cannot reliably decode the
CAN bus signal because its transceiver is
not in the same operating mode as the actual
transmitter’s transceiver, it could detect idle
to fast or could not detect it at all. In the first
case, it could disturb communication; in the
second case, it would not integrate. This

iCC 2020 CAN in Automation

49

problem can be solved by the introduction
of an additional input comparator threshold,
T_OoB. This threshold is used during arbi-
tration phase mode, together with T_a. It
compensates for ‘0’ bits of the data phase
that may reach a receiver with a level that
does not exceed T_a and that may be
decoded as ‘1’ bits, see Figure 8.

Figure 8: Integration into CAN XL
Communication

To compensate for the missing ‘0’ bits,
T_OoB causes ‘1’ bits of the data phase to
be decoded as ‘0’ bits, preventing a false
positive in idle detection for a starting node
with a transceiver operating in arbitration
phase mode. When the actual transmitter
switches back to arbitration phase mode,
the recessive bits enable idle detection.
Idle detection is also used by receivers that
detect an error in a CAN XL frame. Instead
of starting an error frame, they treat it as a
protocol exception and wait until the bus is
idle again.

T_
O

oB

3,
5V

1,
5V

2,
5V 0V

t

U +2
V 0V

t

VD
IF

F
=

CA
N_

H
–

CA
N

_L
U

T_
a

3,
0V

2,
0V

CA
N

_H

CA
N

_L

re
c

re
c

do
m

do
m

1
 0
 1

0
1
0
 1
 0

0
 0
 0

0
0

0
 0
 0

0
0

0

0

1
 0
 0

0
 0
 0

0
0
0
 0

-1
V

+1
V

Vd
iff

_D
0_

M
in

Rx
D

Re
ce

iv
er

 in

Ar
bi

tr
at

io
n

M
od

e

A
m

bi
gu

ou
s,

 m
ay

 b
e

se
en

 re
ce

ss
iv

e

T_
O

oB
 >

 V
D

IF
F

re
po

rte
d

as
 d

om
in

an
t

D
ur

in
g

In
te

gr
at

io
n,

 T
hr

es
ho

ld
 T

_O
oB

pr

ev
en

ts
 fa

ls
e

po
si

tiv
e

at
 Id

le
 D

et
en

ci
on

Leaving Data Phase Modes

Figure 9: Data to Arbitration Sequence DAS

The transceiver mode is switched from
data phase modes to arbitration phase
mode during the DAS bit sequence. After
the CRC field, all nodes change from data
bit rate to arbitration bit rate at the bit
boundary between FCP0 and AH1. In AH1,
the transceivers stay in data phase mode,
so the transmitter’s transceiver drives a
negative VDiff, causing the RxD pins to high
level.
During AH1, the protocol controllers set their
RxD pins, for a time of 3 tq, into output mode
and drive a low-pulse, see Figure 9. The
transceivers detect the pulse and switch
their operating mode into arbitration phase
mode at the edge from AH1 to AL2. The
transmitter’s transceiver waits for the edge
of its TxD signal, the receivers’ transceivers
wait for edge on the CAN bus signal.
The edge from AH1 to AL2 synchronizes all
nodes to the changed bit rate; it is followed
by the recessive AH2 bit. The following bits
ACK, End of Frame, and Intermission are
again compatible to Classical and CAN
FD frame format and allow other nodes to
reintegrate when they detected an error or
are restricted to CAN FD proto-col frames.
Apart from this regular mode switch during
DAS, there are additional mechanisms
to return a transceiver into its default
arbitration phase mode.
A transceiver in Rx data phase mode
switches back into arbitration phase mode
when it detects a low signal at its TxD

3,5V

1,5V

2,5V

0V t

U

3,0V

2,0V

TxD

RxD Transmitter

RxD Receiver

Transceiver Loop Delay

Tx-Switch to Arbitration

CAN_H

CAN_L

AH2AL2AH1
 F_CRC FCP=1100
5 4 3 2 1 0 3 2 1 0 ACK

-2V

+2V

0V t

VDIFF = CAN_H – CAN_LU

T_a
T_d

-1V

+1V
Vdiff_D0_Min

-0.4V T_OoB

TxD Receiver

Pulse driven by Protocol Controller

ACK

Bus Line Delay
(5 ns/m)

Rx-Switch to Arbitration

iCC 2020 CAN in Automation

50

input or when the distance between two
edges on the CAN bus exceeds a timeout
limit.
A transceiver in Tx data phase mode
switches back into arbitration phase mode
when the distance between two edges on its
TxD input exceeds a timeout limit.
These two mechanisms allow receivers that
detected an error in the frame to reintegrate
and prevents a transmitter’s transceiver
from disturbing the communication when its
protocol controller is stopped.

Implementation of CAN XL into Hardware

There are currently several different IP
modules available for Classical CAN and
for CAN FD, integrated into a wide range
of µCs and as standalone protocol control-
lers. Future CAN XL IP modules will still be
able to handle Classical CAN and CAN FD
communication, but updating IP modules
from CAN FD to CAN XL is a complex
task.
Updating the protocol FSM that encodes
and decodes the frames is a straightfor-ward
process, it needs additional CRC generators,
different stuffing mechanism, new bit time
configuration, control func-tions for the RxD
pin, and enhanced time stamping function.
The main difference of CAN XL modules
compared to CAN FD modules is their
message handling. In classical CAN
standalone implementations (e.g. CC770),
the messages can be stored locally in a
dedicated CAM/RAM array that allows very

fast acceptance filtering and atomic message
handling. In classical CAN IPs (C_CAN),
atomic message handling is still possible
with a dedicated wide RAM and indirect
CPU access. Atomic message handling,
where the protocol controller moves a whole
CAN message in one RAM access, had to
be abandoned with the introduction of CAN
FD, where the messages can be up to 64
bytes long. The M_CAN IP module buffers
only a part of a received message locally,
until acceptance filtering decides in which
part of its dedicated message RAM it is to
be stored. The M_CAN’s message handling
concept works well for CAN FD, but has
disadvantages for longer CAN XL messages.
Critical factors are the space needed for
the storage of long messages and the
time needed to copy large data packages
between system RAM and message
RAM. Another factor are the divergent
require-ments of different applications. While
some applications require a conventional
CAN style message handling, others,
especially those where Ethernet frames are
tunneled (see [6]), require Ethernet style
message handling. Gateway implementa-
tions will need an interface to e.g. an
Enhanced Data Engine (see [7]).
The solution is a separation between
the message handling and the protocol
controller, where different Message Handler
IPs can be connected to the same protocol
controller, using standardized interfaces,
e.g. AXI interfaces enhanced with user
signals.

CANXL Protocol Controller

Shift Register

TX AXI

RX AXI

CAN_TX
Config / Control / Status RegistersREG AXI

Rx-Buffers

Tx-Buffers

ENABLE

Protocol
FSM

TIMEBASE

CAN_RX

RxD_Out_Ena

RxD_Out_Val

D_TX
D_RX

X C AN_P R T - C AN X L P rotocol C ontroller

Capture

Timestamp

GPIO
Ports

Timer

M
es

sa
ge

 H
an

dl
in

g

Rx
Tx

Figure 10: Example of a CAN XL Hardware Implementation

iCC 2020 CAN in Automation

51

Figure 10 shows an example for such an
implementation. XCAN_PRT provides all
CAN XL protocol features specified in [1],
with interfaces to control the GPIO pins and
to capture a time base for time stamps.
Received messages are transferred as
a sequence of words via RX_AXI to the
Message Handler, while messages to be
transmitted are transferred via TX_AXI in
the opposite direction.

Conclusion

The introduction of CAN XL into CAN
systems not only increases the transmission
bandwidth, it also allows the introduction
of Ethernet style IP communication. Since
CAN XL implementations also support
Classical CAN and CAN FD protocol and
can be used with existing physical layers,
they can be introduced incrementally into
CAN applications.
To achieve the full advantages of CAN XL,
all nodes need to be upgraded to the new
protocol and to the switchable physical layer
with a dedicated data phase mode.

Florian Hartwich
Robert Bosch GmbH	
AE/EIY4
Postfach 13 42		
DE-72703 Reutlingen
www.can.bosch.com

References

[1]	CiA 610-1, CAN XL, Data link layer and phys-
ical signaling, working draft, December 2019.

[2]	ISO 11898-1:2015 Road vehicles —
Controller area network (CAN) — Part 1:
Data link layer and physical signaling, 2015

[3]	A. Mutter, „CAN XL error detection capabili-
ties“, in Proceedings of the 17th international
CAN Conference, Baden-Baden, Germany,
2020.

[4]	C. Senger, „CRC error detection for CAN XL“,
in Proceedings of the 17th international CAN
Conference, Baden-Baden, Germany, 2020.

[5]	M-M. Hell, „The physical layer in the CAN XL
world“, in Proceedings of the 17th international
CAN Conference, Baden-Baden, Germany,
2020.

[6]	P. Decker „IP concepts on CAN XL”, in
Pro-ceedings of the 17th international CAN
Confer-ence, Baden-Baden, Germany, 2020.

[7]	A. Lock, “Trends in Future In-Vehicle Com-
munication Networks”, in Proceedings of the
6th Automotive Ethernet Congress, Munich,
Germany, 2020

