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Introducing CAN XL into CAN Networks

Florian Hartwich, Robert Bosch

Introduction

The initial spark for CAN XL was a 
presentation at the ISO/TC 22/SC31/WG3 
plenary meeting in September 2018, where 
Volkswagen started a discussion about a 
bus network that combines Ethernet style 
frames with CAN style arbitration at a net 
data rate of 10 MBit/s.

Figure 1: Filling the gap between CAN FD 
and Ethernet

While an automotive Ethernet bus net- 
work is also in development (10BASE-T1S ),  
that requires a more complicated collision-
avoidance method, compared to CAN’s non-
destructive collision-resolution.
The presentation found widespread interest 
in both the automotive as well as in the 
industrial automation industry and lead to the 

The next generation of CAN communication is currently being specified inside the CiA’s 
CAN XL Special Interest Group. The new frame format combines Ethernet style frames 
with the non-destructive collision-resolution of CAN arbitration. Newly developed  
CAN XL transceivers with symmetrical bit levels in the data phase will enable a net  
bit rate of 10 MBit/s, but existing CAN FD transceivers may also be used, at lower  
bit rate.
The new CAN XL frame format introduces a header CRC, a payload type describing the
contents of the data field, and up to 2048 data bytes. After the arbitration is decided, the
bit timing is switched from arbitration bit rate to data bit rate and the CAN XL transceivers
are set into a high-speed operating mode. They return to arbitration mode before CAN 
style acknowledgement.
This paper explains the CAN XL frame format in detail, especially the differences and 
the compatibilities between CAN XL and CAN FD. Further emphasis is placed on the 
introduction strategy of CAN XL nodes into existing CAN FD systems and on new 
communication concepts. Finally, the paper shows the impact of the longer payloads 
on the hardware implementation of CAN controllers.

establishment of the CAN XL Special Interest 
Group (SIG) inside CAN in Automation for 
further discussion on this new concept.
The name CAN XL was chosen at the first 
SIG CAN XL meeting in December 2018 
that started the specification of the CAN XL 
protocol and physical layer as parts of the 
forthcoming CiA610 document series.
The goal of the SIG CAN XL is a technically 
stable CAN XL specification for OSI layers  
1 and 2 (known as CAN XL protocol) that 
merges CAN principles with higher bandwidth, 
low cost, and future proof features. As second 
step, the ISO standardization will be started. 
In addition, many other CAN related standards 
will be updated simultaneously to support 
CAN XL, namely the CAN Conformance Test 
according to ISO16845, time-synchronization, 
and the transport layer.

Key Protocol Features

	 •	 Net data rates up to 10Mbit/s
	 •	 Large data fields with up to 2048 byte  
		  enable the tunneling of complete Ethernet 
		  frames e.g. used for higher layer protocols 
		  like IP (Internet Protocol)
	 •	 Interoperability with CAN FD for mixed
		  FD/XL networks
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Physical Layer

CAN XL will be operable with four classes
of CAN transceivers (see also [5]):
	 •	 Classical CAN up to 1Mbit/s
	 •	 CAN FD up to 2Mbit/s
	 •	 CAN FD-SiC up to 5-8Mbit/s
	 •	 CAN XL up to 10 Mbit/s and beyond (in
		  development)
The actual bit rate of CAN XL can be adapted 
to the requirements of the communication 
system and the network topology. 

Compatibility of CAN XL and CAN FD

When CAN FD was specified in ISO 
11898-1:2015, one bit was reserved for 
the future expansion of the protocol. This 
is the reserved bit after the FDF bit, which 
is expected to be dominant in CAN FD 
frames. When it is seen recessive, a CAN 
FD node will detect a protocol exception. 
Software configuration decides whether the 
node treats this as a form error or whether it 
enters the Protocol Exception State, where 
it will remain until the bus is idle again.
The CAN XL frame format is, up to the FDF 
bit, identical to the FD base frame format 
FBFF. IDE is always dominant in CAN XL 
frames; they do not use 29-bit identifiers. In 
CAN XL format, both the FDF bit and the 
following XLF bit are transmitted recessive. 
XLF replaces the dominant reserved bit of 
the CAN FD for-mat, so a receiving node 
branches at this bit into CAN XL reception 
state, or into Protocol Exception State when 
it is a CAN FD node. The transmitter of a 
CAN XL frame may lose arbitration at the 
FDF or XLF bits against other nodes sending 
a Classical CAN or CAN FD frame. 

Figure 2: Decoding the Frame Format

The Protocol Exception State feature  
of CAN FD node allows introducing  
CAN XL nodes into CAN FD systems, 
providing an incremental upgrade path to 
CAN XL.

When a CAN XL frame is transmitted, the 
recessive XLF bit after the FDF bit sets the 
CAN FD nodes into the Protocol Exception 
State where they do not disturb the CAN XL 
frame. The CAN FD nodes cannot receive 
the CAN XL frame, but they do not detect an 
error and they are able to join the arbitration 
for the following frame. 

CAN XL Frame Format

The CAN XL frame format also contains 
one bit that is reserved for the future  
expansion of the protocol. This is the  
resXL bit after the XLF bit, which is  
expected to be dominant in CAN XL  
frames. When it is seen recessive, a  
CAN XL node will detect a protocol  
exception, which is handled like in a  
CAN FD node.
The beginning of a CAN XL frame has 
the same bit rate and stuffing mechanism 
as in Classical CAN or CAN FD, but  
after arbitration is decided, the control  
field is expanded with additional sub-fields 
and fixed bit stuffing is used. Excluding  
the 29-bit identifiers enables a high  
net bit-rate for short payloads while  
additional addressing may be added to  
the payload.
The ADS bit sequence provides synchro-
nization edges before and after switching 
from arbitration bit rate to data phase bit rate 
and optionally switching of the trans-ceiver’s 
operating mode.
The Payload Type PT describes the  
formatting of the frame’s data field. This  
enables classical CAN data fields, additional 
addressing, transparent Ethernet frame 
tunneling, use of TCP/IP, SOME/IP, and 
more. Details will be specified in a sepa-
rate higher-layer standard document, also 
developed by the SIG CAN XL.
The DLC in the range of 0 to 2047 codes 
the data field length of 1 to 2048 bytes in 
byte granularity. The complete header is 
protected by the header CRC while the 
Stuff Bit Count SBC checks the number of 
dynamic stuff bits. 

Figure 3: CAN XL Control Field
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The data field is followed by the 32 bit long 
frame CRC sequence that secures the 
whole frame, including the header. The 
format check pattern FCP at the end of the 
CRC field checks for bit insertions and bit 
drops caused by mis-synchronizations. 

Figure 4: CAN XL Data Field and Frame 
CRC

After the data phase ends with the CRC 
field, the DAS bit sequence provides syn-
chronization when switching back to arbi-
tration bit rate. Acknowledge, EOF, and 
Intermission complete the frame and allow 
the re-integration of CAN FD nodes. 

Figure 5: CAN XL Acknowledge and End of 
Frame

CAN XL Transceiver’s Operating Modes

Like in CAN FD, CAN XL frames include 
a data phase where a faster bit rate is 
used than in the arbitration phase. The bit 
rate of the arbitration phase has the same  
dependency on signal delay times as in 
CAN FD or Classical CAN, so the three 
frame formats can arbitrate with each  
other.
In the data phase, the bit rate is not limited 
by signal delay time, but by asymmetry 
of the bit edges and by ringing caused by 
bus topology. Two new types of transceiv-
ers have been developed for CAN FD,  
“FD” with improved symmetry and  
“FD-SIC” with a ringing-suppression  
function. These transceivers enable 
bit rates up to 8 MBit/s, but they 
still operate with the usual bit levels 
specified in ISO 11898-2, “dominant” 
(transceiver drives differential voltage VDiff  
to 2 V at twisted pair bus line) and  
“recessive” (termination resistors shorten 
VDiff to 0 V).
A new transceiver type with three operat-ing 
modes is being developed for CAN XL. In 

the arbitration phase, it operates with the 
ISO11898-2 levels, but in the data phase, 
the transmitter drives both bit levels push/ 
pull with the same, inverse strength while 
the receiver does not drive at all.
The (currently not finalized) specification 
sets the VDiff levels to ±1V with a  
receiver threshold T_d at 0V. Target is  
a gross bit rate of more than 12 MBit/s, 
resulting in a net bit rate of at least  
10 MBit/s. 
Switching the transceiver from arbitration 
phase mode into data phase transmitter 
mode or receiver mode and then back 
requires a change in the interface between 
protocol controller and transceiver.
The CAN XL protocol controller signals  
the mode switches to the transceiver  
during the ADS and DAS bit sequences. 
The signaling method uses only the  
existing RxD and TxD signals, avoiding the 
cost of additional pins. The (currently not 
finalized) specification signals via a pulse 
on the RxD signal, driven by the protocol 
controller; details are shown in Figure 7 and 
Figure 9.
In current transceivers, TxD is output of the 
protocol controller and RxD is output of the 
transceiver. The protocol controller gets the 
ability to switch the direction of its RxD pin 
for mode signaling, while the transceiver 
reduces its driving strength on the RxD 
signal after each change of the signal; 
details are shown in Figure 6.
When a CAN IP module is integrated into 
a µC, two of the General Purpose Input/-
Output (GPIO) pins are selected for CAN 
communication. Generic GPIO pins have 
three register bits to control their direction 
and their output value or to read their input 
value, accessible via their peripheral bus, 
see top of Figure 6. The pin selected as 
output CAN_Tx needs a multiplexer that 
enables the output driver to be directly 
controlled by the protocol controller, which 
operates in its own CAN clock domain, not 
in the peripheral bus clock domain. The pin 
selected as input CAN_Rx needs a direct 
path to the protocol controller that bypasses 
the synchronization to the peripheral clock.
For CAN XL mode switching, two  
multiplexers allow the protocol controller to  
control   direction and output value of the 
RxD pin. 
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Figure 6: GPIO pins for CAN Controllers 

Figure 7:  Arbitration to Data Sequence ADS 

Entering Data Phase Modes

The transceiver mode is switched from 
arbitration phase mode to data phase mode
during the ADS bit sequence. Both resXL 
and AL1 bits are driven dominant by the 
transmitter and recessive by the receivers, 
so all nodes see VDiff > T_a, setting their RxD 
pin to low level. During AL1, the protocol 
controllers set their RxD pins, for a time of 3 
tq, into output mode and drive a highpulse, 
see Figure 7. The transceivers detect the 
pulse and switch their operating mode into 
Tx data phase mode (when TxD = L) or into 
Rx data phase mode (when TxD = H).
The mode-switch is confirmed to the protocol
controllers by a static high level at the RxD 
signal for transmitters or by a level in the 
rest of the AL1 bit for receivers.
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The AL1 bit is the last bit of the arbitration 
phase, the DH1 bit is the first bit of the 
data phase, the bit rate changing at the bit 
boundary. All protocol controllers ignore 
the edges and the value sampled at the 
AL1 bit, it is excluded from CRC calcula-
tion (see [4]). The receivers perform a hard 
synchronization at the edge from DH1 to 
DL1, minimizing their accumulated phase 
shifts.
In the data phase, the transmitter’s trans-
ceiver drives the TxD signal symmetrically 
in push/¬pull mode with VDiff levels at ±1V, 
beginning with the edge to the DH1 bit. The 
receivers’ transceivers switch their input 
comparator threshold from the usual T_a 
(0.7 V) to T_d at 0V, latest at the DH1 bit.
Error flags that overwrite data bits are not 
possible while the transmitter sends in 
push/pull mode, so the receivers will not 
send an error flag when they detect an 
error. Instead, they will switch their trans-
ceivers back into arbitration phase mode 
and wait for the bus idle detection condi-
tion, similar to the restricted operation mode 
as specified in chapter 10.15 of [2]. When 
the receivers cannot send error flags, the 
transmitter dispenses with bit error checks; 
it treats a transmission as valid when it is 
acknowledged. For CAN XL error detection 
capabilities, see [3].

Integrating into CAN XL communication

While a transceiver in data phase mode can 
decode a ‘0’ bit send by another transceiver 
in arbitration phase mode and transceiver 
in arbitration phase mode can decode a ‘1’ 
bit send in data phase mode, the inverse bit 
levels cannot be decoded unambiguously.
This could prevent a node that is started 
while CAN XL communication is already in 
progress from integrating into the system. 
A newly started node waits for the idle 
condition (detection of a sequence of eleven 
consecutive sampled recessive bits) before 
it can receive or transmit frames. When the 
starting node cannot reliably decode the 
CAN bus signal because its transceiver is 
not in the same operating mode as the actual 
transmitter’s transceiver, it could detect idle 
to fast or could not detect it at all. In the first 
case, it could disturb communication; in the 
second case, it would not integrate. This 
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problem can be solved by the introduction 
of an additional input comparator threshold, 
T_OoB. This threshold is used during arbi-
tration phase mode, together with T_a. It 
compensates for ‘0’ bits of the data phase 
that may reach a receiver with a level that 
does not exceed T_a and that may be  
decoded as ‘1’ bits, see Figure 8. 

Figure 8: Integration into CAN XL 
Communication

To compensate for the missing ‘0’ bits,  
T_OoB causes ‘1’ bits of the data phase to 
be decoded as ‘0’ bits, preventing a false 
positive in idle detection for a starting node 
with a transceiver operating in arbitration 
phase mode. When the actual transmitter 
switches back to arbitration phase mode, 
the recessive bits enable idle detection.
Idle detection is also used by receivers that 
detect an error in a CAN XL frame. Instead 
of starting an error frame, they treat it as a 
protocol exception and wait until the bus is 
idle again. 
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Figure 9: Data to Arbitration Sequence DAS

The transceiver mode is switched from 
data phase modes to arbitration phase 
mode during the DAS bit sequence. After 
the CRC field, all nodes change from data 
bit rate to arbitration bit rate at the bit 
boundary between FCP0 and AH1. In AH1, 
the transceivers stay in data phase mode, 
so the transmitter’s transceiver drives a 
negative VDiff, causing the RxD pins to high 
level.
During AH1, the protocol controllers set their 
RxD pins, for a time of 3 tq, into output mode 
and drive a low-pulse, see Figure 9. The 
transceivers detect the pulse and switch 
their operating mode into arbitration phase 
mode at the edge from AH1 to AL2. The 
transmitter’s transceiver waits for the edge 
of its TxD signal, the receivers’ transceivers 
wait for edge on the CAN bus signal.
The edge from AH1 to AL2 synchronizes all 
nodes to the changed bit rate; it is followed 
by the recessive AH2 bit. The following bits 
ACK, End of Frame, and Intermission are 
again compatible to Classical and CAN 
FD frame format and allow other nodes to  
reintegrate when they detected an error or 
are restricted to CAN FD proto-col frames. 
Apart from this regular mode switch during 
DAS, there are additional mechanisms  
to return a transceiver into its default  
arbitration phase mode.
A transceiver in Rx data phase mode 
switches back into arbitration phase mode 
when it detects a low signal at its TxD 
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input or when the distance between two  
edges on the CAN bus exceeds a timeout 
limit.
A transceiver in Tx data phase mode 
switches back into arbitration phase mode 
when the distance between two edges on its 
TxD input exceeds a timeout limit.
These two mechanisms allow receivers that 
detected an error in the frame to reintegrate 
and prevents a transmitter’s transceiver 
from disturbing the communication when its 
protocol controller is stopped. 

Implementation of CAN XL into Hardware

There are currently several different IP 
modules available for Classical CAN and 
for CAN FD, integrated into a wide range 
of µCs and as standalone protocol control-
lers. Future CAN XL IP modules will still be 
able to handle Classical CAN and CAN FD 
communication, but updating IP modules 
from CAN FD to CAN XL is a complex  
task.
Updating the protocol FSM that encodes 
and decodes the frames is a straightfor-ward 
process, it needs additional CRC generators, 
different stuffing mechanism, new bit time 
configuration, control func-tions for the RxD 
pin, and enhanced time stamping function. 
The main difference of CAN XL modules 
compared to CAN FD modules is their 
message handling. In classical CAN 
standalone implementations (e.g. CC770), 
the messages can be stored locally in a 
dedicated CAM/RAM array that allows very 

fast acceptance filtering and atomic message 
handling. In classical CAN IPs (C_CAN), 
atomic message handling is still possible 
with a dedicated wide RAM and indirect 
CPU access. Atomic message handling, 
where the protocol controller moves a whole 
CAN message in one RAM access, had to 
be abandoned with the introduction of CAN 
FD, where the messages can be up to 64 
bytes long. The M_CAN IP module buffers 
only a part of a received message locally, 
until acceptance filtering decides in which 
part of its dedicated message RAM it is to 
be stored. The M_CAN’s message handling 
concept works well for CAN FD, but has 
disadvantages for longer CAN XL messages.
Critical factors are the space needed for 
the storage of long messages and the 
time needed to copy large data packages  
between system RAM and message  
RAM. Another factor are the divergent 
require-ments of different applications. While 
some applications require a conventional 
CAN style message handling, others,  
especially those where Ethernet frames are 
tunneled (see [6]), require Ethernet style 
message handling. Gateway implementa-
tions will need an interface to e.g. an  
Enhanced Data Engine (see [7]). 
The solution is a separation between 
the message handling and the protocol  
controller, where different Message Handler 
IPs can be connected to the same protocol 
controller, using standardized interfaces,  
e.g. AXI interfaces enhanced with user 
signals.
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Figure 10: Example of a CAN XL Hardware Implementation
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Figure 10 shows an example for such an  
implementation. XCAN_PRT provides all 
CAN XL protocol features specified in [1], 
with interfaces to control the GPIO pins and 
to capture a time base for time stamps.
Received messages are transferred as 
a sequence of words via RX_AXI to the 
Message Handler, while messages to be 
transmitted are transferred via TX_AXI in 
the opposite direction.

Conclusion

The introduction of CAN XL into CAN  
systems not only increases the transmission 
bandwidth, it also allows the introduction 
of Ethernet style IP communication. Since 
CAN XL implementations also support 
Classical CAN and CAN FD protocol and 
can be used with existing physical layers, 
they can be introduced incrementally into 
CAN applications.
To achieve the full advantages of CAN XL, 
all nodes need to be upgraded to the new 
protocol and to the switchable physical layer 
with a dedicated data phase mode. 
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